Gel mesh as "brake" to slow down DNA translocation through solid-state nanoporesElectronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03084f

Agarose gel is introduced onto the cis side of silicon nitride nanopores by a simple and low-cost method to slow down the speed of DNA translocation. DNA translocation speed is slowed by roughly an order of magnitude without losing signal to noise ratio for different DNA lengths and applied voltages...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tang, Zhipeng, Liang, Zexi, Lu, Bo, Li, Ji, Hu, Rui, Zhao, Qing, Yu, Dapeng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13214
container_issue 31
container_start_page 1327
container_title
container_volume 7
creator Tang, Zhipeng
Liang, Zexi
Lu, Bo
Li, Ji
Hu, Rui
Zhao, Qing
Yu, Dapeng
description Agarose gel is introduced onto the cis side of silicon nitride nanopores by a simple and low-cost method to slow down the speed of DNA translocation. DNA translocation speed is slowed by roughly an order of magnitude without losing signal to noise ratio for different DNA lengths and applied voltages in gel-meshed nanopores. The existence of the gel moves the center-of-mass position of the DNA conformation further from the nanopore center, contributing to the observed slowing of translocation speed. A reduced velocity fluctuation is also noted, which is beneficial for further applications of gel-meshed nanopores. The reptation model is considered in simulation and agrees well with the experimental results. Gel is introduced into solid-state nanopore systems to slow down DNA translocation.
doi_str_mv 10.1039/c5nr03084f
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c5nr03084f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c5nr03084f</sourcerecordid><originalsourceid>FETCH-rsc_primary_c5nr03084f3</originalsourceid><addsrcrecordid>eNp9jzFPwzAUhC0EEqWwsCM9OsGQ4tYhUDZEA3SBoezRq_NCDI5t-blU_Bz-KUUgGJA63enu9EknxOFIDkdSTc70uYtSycu82RK9scxlptTFePvXF_mu2GN-kbKYqEL1xMcdWeiIW0CGwSLiKw0geWDrV1D7lYPpwzWkiG6daEzGO0ht9MvnFthbU2ecMBE4dD74SFxa0il6ZzTwMgRLHbmE8R2Ma3zsvgkn5Xx2CviGxuLC0hDmRDB9nF3B_yP7YqdBy3Two31xdFs-3dxnkXUVounW8OpvrvrieFNfhfprs5nxCW0fZug</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gel mesh as "brake" to slow down DNA translocation through solid-state nanoporesElectronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03084f</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Tang, Zhipeng ; Liang, Zexi ; Lu, Bo ; Li, Ji ; Hu, Rui ; Zhao, Qing ; Yu, Dapeng</creator><creatorcontrib>Tang, Zhipeng ; Liang, Zexi ; Lu, Bo ; Li, Ji ; Hu, Rui ; Zhao, Qing ; Yu, Dapeng</creatorcontrib><description>Agarose gel is introduced onto the cis side of silicon nitride nanopores by a simple and low-cost method to slow down the speed of DNA translocation. DNA translocation speed is slowed by roughly an order of magnitude without losing signal to noise ratio for different DNA lengths and applied voltages in gel-meshed nanopores. The existence of the gel moves the center-of-mass position of the DNA conformation further from the nanopore center, contributing to the observed slowing of translocation speed. A reduced velocity fluctuation is also noted, which is beneficial for further applications of gel-meshed nanopores. The reptation model is considered in simulation and agrees well with the experimental results. Gel is introduced into solid-state nanopore systems to slow down DNA translocation.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c5nr03084f</identifier><language>eng</language><creationdate>2015-07</creationdate><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Tang, Zhipeng</creatorcontrib><creatorcontrib>Liang, Zexi</creatorcontrib><creatorcontrib>Lu, Bo</creatorcontrib><creatorcontrib>Li, Ji</creatorcontrib><creatorcontrib>Hu, Rui</creatorcontrib><creatorcontrib>Zhao, Qing</creatorcontrib><creatorcontrib>Yu, Dapeng</creatorcontrib><title>Gel mesh as "brake" to slow down DNA translocation through solid-state nanoporesElectronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03084f</title><description>Agarose gel is introduced onto the cis side of silicon nitride nanopores by a simple and low-cost method to slow down the speed of DNA translocation. DNA translocation speed is slowed by roughly an order of magnitude without losing signal to noise ratio for different DNA lengths and applied voltages in gel-meshed nanopores. The existence of the gel moves the center-of-mass position of the DNA conformation further from the nanopore center, contributing to the observed slowing of translocation speed. A reduced velocity fluctuation is also noted, which is beneficial for further applications of gel-meshed nanopores. The reptation model is considered in simulation and agrees well with the experimental results. Gel is introduced into solid-state nanopore systems to slow down DNA translocation.</description><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNp9jzFPwzAUhC0EEqWwsCM9OsGQ4tYhUDZEA3SBoezRq_NCDI5t-blU_Bz-KUUgGJA63enu9EknxOFIDkdSTc70uYtSycu82RK9scxlptTFePvXF_mu2GN-kbKYqEL1xMcdWeiIW0CGwSLiKw0geWDrV1D7lYPpwzWkiG6daEzGO0ht9MvnFthbU2ecMBE4dD74SFxa0il6ZzTwMgRLHbmE8R2Ma3zsvgkn5Xx2CviGxuLC0hDmRDB9nF3B_yP7YqdBy3Two31xdFs-3dxnkXUVounW8OpvrvrieFNfhfprs5nxCW0fZug</recordid><startdate>20150730</startdate><enddate>20150730</enddate><creator>Tang, Zhipeng</creator><creator>Liang, Zexi</creator><creator>Lu, Bo</creator><creator>Li, Ji</creator><creator>Hu, Rui</creator><creator>Zhao, Qing</creator><creator>Yu, Dapeng</creator><scope/></search><sort><creationdate>20150730</creationdate><title>Gel mesh as "brake" to slow down DNA translocation through solid-state nanoporesElectronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03084f</title><author>Tang, Zhipeng ; Liang, Zexi ; Lu, Bo ; Li, Ji ; Hu, Rui ; Zhao, Qing ; Yu, Dapeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c5nr03084f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Zhipeng</creatorcontrib><creatorcontrib>Liang, Zexi</creatorcontrib><creatorcontrib>Lu, Bo</creatorcontrib><creatorcontrib>Li, Ji</creatorcontrib><creatorcontrib>Hu, Rui</creatorcontrib><creatorcontrib>Zhao, Qing</creatorcontrib><creatorcontrib>Yu, Dapeng</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Zhipeng</au><au>Liang, Zexi</au><au>Lu, Bo</au><au>Li, Ji</au><au>Hu, Rui</au><au>Zhao, Qing</au><au>Yu, Dapeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gel mesh as "brake" to slow down DNA translocation through solid-state nanoporesElectronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03084f</atitle><date>2015-07-30</date><risdate>2015</risdate><volume>7</volume><issue>31</issue><spage>1327</spage><epage>13214</epage><pages>1327-13214</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Agarose gel is introduced onto the cis side of silicon nitride nanopores by a simple and low-cost method to slow down the speed of DNA translocation. DNA translocation speed is slowed by roughly an order of magnitude without losing signal to noise ratio for different DNA lengths and applied voltages in gel-meshed nanopores. The existence of the gel moves the center-of-mass position of the DNA conformation further from the nanopore center, contributing to the observed slowing of translocation speed. A reduced velocity fluctuation is also noted, which is beneficial for further applications of gel-meshed nanopores. The reptation model is considered in simulation and agrees well with the experimental results. Gel is introduced into solid-state nanopore systems to slow down DNA translocation.</abstract><doi>10.1039/c5nr03084f</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof
issn 2040-3364
2040-3372
language eng
recordid cdi_rsc_primary_c5nr03084f
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Gel mesh as "brake" to slow down DNA translocation through solid-state nanoporesElectronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03084f
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gel%20mesh%20as%20%22brake%22%20to%20slow%20down%20DNA%20translocation%20through%20solid-state%20nanoporesElectronic%20supplementary%20information%20(ESI)%20available.%20See%20DOI:%2010.1039/c5nr03084f&rft.au=Tang,%20Zhipeng&rft.date=2015-07-30&rft.volume=7&rft.issue=31&rft.spage=1327&rft.epage=13214&rft.pages=1327-13214&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c5nr03084f&rft_dat=%3Crsc%3Ec5nr03084f%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true