A synthetic gene circuit for measuring autoregulatory feedback control

Autoregulatory feedback loops occur in the regulation of molecules ranging from ATP to MAP kinases to zinc. Negative feedback loops can increase a system's robustness, while positive feedback loops can mediate transitions between cell states. Recent genome-wide experimental and computational st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integrative biology (Cambridge) 2016-04, Vol.8 (4), p.546-555
Hauptverfasser: Schikora-Tamarit, Miquel ngel, Toscano-Ochoa, Carlos, Domingo Espins, Jlia, Espinar, Lorena, Carey, Lucas B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 555
container_issue 4
container_start_page 546
container_title Integrative biology (Cambridge)
container_volume 8
creator Schikora-Tamarit, Miquel ngel
Toscano-Ochoa, Carlos
Domingo Espins, Jlia
Espinar, Lorena
Carey, Lucas B
description Autoregulatory feedback loops occur in the regulation of molecules ranging from ATP to MAP kinases to zinc. Negative feedback loops can increase a system's robustness, while positive feedback loops can mediate transitions between cell states. Recent genome-wide experimental and computational studies predict hundreds of novel feedback loops. However, not all physical interactions are regulatory, and many experimental methods cannot detect self-interactions. Our understanding of regulatory feedback loops is therefore hampered by the lack of high-throughput methods to experimentally quantify the presence, strength and temporal dynamics of autoregulatory feedback loops. Here we present a mathematical and experimental framework for high-throughput quantification of feedback regulation and apply it to RNA binding proteins (RBPs) in yeast. Our method is able to determine the existence of both direct and indirect positive and negative feedback loops, and to quantify the strength of these loops. We experimentally validate our model using two RBPs which lack native feedback loops and by the introduction of synthetic feedback loops. We find that RBP Puf3 does not natively participate in any direct or indirect feedback regulation, but that replacing the native 3UTR with that of COX17 generates an auto-regulatory negative feedback loop which reduces gene expression noise. Likewise, RBP Pub1 does not natively participate in any feedback loops, but a synthetic positive feedback loop involving Pub1 results in increased expression noise. Our results demonstrate a synthetic experimental system for quantifying the existence and strength of feedback loops using a combination of high-throughput experiments and mathematical modeling. This system will be of great use in measuring auto-regulatory feedback by RNA binding proteins, a regulatory motif that is difficult to quantify using existing high-throughput methods. A synthetic gene circuit for quantifying the strength of native feedback regulation among the RNA binding proteins in yeast.
doi_str_mv 10.1039/c5ib00230c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_rsc_primary_c5ib00230c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1782831759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-cba4b1fa0af030da941bec1cf0a2f08c9f7cddc2edf642fc241e14cab078c98f3</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRS0EoqWwYQ_yEiEFxo7zWpaIQqVKbGAdOZNxCeRRbGfRvydQWlZ3pHt0pTmMXQq4ExBm9xjVJYAMAY_YVCRREmQJpMf7O87UhJ059wEQKwB1yiYyTmQKqZiyxZy7beffydfI19QRx9riUHtuestb0m6wdbfmevC9pfXQ6DG33BBVpcZPjn3nbd-csxOjG0cXfzljb4vH1_w5WL08LfP5KsAokz7AUqtSGA3aQAiVzpQoCQUa0NJAiplJsKpQUmViJQ1KJUgo1CUkY5macMZudrsb238N5HzR1g6paXRH_eAKkaQyDce_sxG93aFoe-csmWJj61bbbSGg-PFW5NHy4ddbPsLXf7tD2VJ1QPeiRuBqB1iHh_ZffPgNtuBz5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1782831759</pqid></control><display><type>article</type><title>A synthetic gene circuit for measuring autoregulatory feedback control</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Schikora-Tamarit, Miquel ngel ; Toscano-Ochoa, Carlos ; Domingo Espins, Jlia ; Espinar, Lorena ; Carey, Lucas B</creator><creatorcontrib>Schikora-Tamarit, Miquel ngel ; Toscano-Ochoa, Carlos ; Domingo Espins, Jlia ; Espinar, Lorena ; Carey, Lucas B</creatorcontrib><description>Autoregulatory feedback loops occur in the regulation of molecules ranging from ATP to MAP kinases to zinc. Negative feedback loops can increase a system's robustness, while positive feedback loops can mediate transitions between cell states. Recent genome-wide experimental and computational studies predict hundreds of novel feedback loops. However, not all physical interactions are regulatory, and many experimental methods cannot detect self-interactions. Our understanding of regulatory feedback loops is therefore hampered by the lack of high-throughput methods to experimentally quantify the presence, strength and temporal dynamics of autoregulatory feedback loops. Here we present a mathematical and experimental framework for high-throughput quantification of feedback regulation and apply it to RNA binding proteins (RBPs) in yeast. Our method is able to determine the existence of both direct and indirect positive and negative feedback loops, and to quantify the strength of these loops. We experimentally validate our model using two RBPs which lack native feedback loops and by the introduction of synthetic feedback loops. We find that RBP Puf3 does not natively participate in any direct or indirect feedback regulation, but that replacing the native 3UTR with that of COX17 generates an auto-regulatory negative feedback loop which reduces gene expression noise. Likewise, RBP Pub1 does not natively participate in any feedback loops, but a synthetic positive feedback loop involving Pub1 results in increased expression noise. Our results demonstrate a synthetic experimental system for quantifying the existence and strength of feedback loops using a combination of high-throughput experiments and mathematical modeling. This system will be of great use in measuring auto-regulatory feedback by RNA binding proteins, a regulatory motif that is difficult to quantify using existing high-throughput methods. A synthetic gene circuit for quantifying the strength of native feedback regulation among the RNA binding proteins in yeast.</description><identifier>ISSN: 1757-9694</identifier><identifier>EISSN: 1757-9708</identifier><identifier>DOI: 10.1039/c5ib00230c</identifier><identifier>PMID: 26728081</identifier><language>eng</language><publisher>England</publisher><subject>3' Untranslated Regions ; Cation Transport Proteins - genetics ; Estradiol - genetics ; Feedback, Physiological ; Gene Regulatory Networks ; Genes, Synthetic ; Green Fluorescent Proteins - metabolism ; Models, Biological ; Models, Theoretical ; Molecular Chaperones - genetics ; Promoter Regions, Genetic ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics ; Synthetic Biology - methods</subject><ispartof>Integrative biology (Cambridge), 2016-04, Vol.8 (4), p.546-555</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-cba4b1fa0af030da941bec1cf0a2f08c9f7cddc2edf642fc241e14cab078c98f3</citedby><cites>FETCH-LOGICAL-c592t-cba4b1fa0af030da941bec1cf0a2f08c9f7cddc2edf642fc241e14cab078c98f3</cites><orcidid>0000-0002-7245-6379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26728081$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schikora-Tamarit, Miquel ngel</creatorcontrib><creatorcontrib>Toscano-Ochoa, Carlos</creatorcontrib><creatorcontrib>Domingo Espins, Jlia</creatorcontrib><creatorcontrib>Espinar, Lorena</creatorcontrib><creatorcontrib>Carey, Lucas B</creatorcontrib><title>A synthetic gene circuit for measuring autoregulatory feedback control</title><title>Integrative biology (Cambridge)</title><addtitle>Integr Biol (Camb)</addtitle><description>Autoregulatory feedback loops occur in the regulation of molecules ranging from ATP to MAP kinases to zinc. Negative feedback loops can increase a system's robustness, while positive feedback loops can mediate transitions between cell states. Recent genome-wide experimental and computational studies predict hundreds of novel feedback loops. However, not all physical interactions are regulatory, and many experimental methods cannot detect self-interactions. Our understanding of regulatory feedback loops is therefore hampered by the lack of high-throughput methods to experimentally quantify the presence, strength and temporal dynamics of autoregulatory feedback loops. Here we present a mathematical and experimental framework for high-throughput quantification of feedback regulation and apply it to RNA binding proteins (RBPs) in yeast. Our method is able to determine the existence of both direct and indirect positive and negative feedback loops, and to quantify the strength of these loops. We experimentally validate our model using two RBPs which lack native feedback loops and by the introduction of synthetic feedback loops. We find that RBP Puf3 does not natively participate in any direct or indirect feedback regulation, but that replacing the native 3UTR with that of COX17 generates an auto-regulatory negative feedback loop which reduces gene expression noise. Likewise, RBP Pub1 does not natively participate in any feedback loops, but a synthetic positive feedback loop involving Pub1 results in increased expression noise. Our results demonstrate a synthetic experimental system for quantifying the existence and strength of feedback loops using a combination of high-throughput experiments and mathematical modeling. This system will be of great use in measuring auto-regulatory feedback by RNA binding proteins, a regulatory motif that is difficult to quantify using existing high-throughput methods. A synthetic gene circuit for quantifying the strength of native feedback regulation among the RNA binding proteins in yeast.</description><subject>3' Untranslated Regions</subject><subject>Cation Transport Proteins - genetics</subject><subject>Estradiol - genetics</subject><subject>Feedback, Physiological</subject><subject>Gene Regulatory Networks</subject><subject>Genes, Synthetic</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Models, Biological</subject><subject>Models, Theoretical</subject><subject>Molecular Chaperones - genetics</subject><subject>Promoter Regions, Genetic</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Synthetic Biology - methods</subject><issn>1757-9694</issn><issn>1757-9708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkMtOwzAQRS0EoqWwYQ_yEiEFxo7zWpaIQqVKbGAdOZNxCeRRbGfRvydQWlZ3pHt0pTmMXQq4ExBm9xjVJYAMAY_YVCRREmQJpMf7O87UhJ059wEQKwB1yiYyTmQKqZiyxZy7beffydfI19QRx9riUHtuestb0m6wdbfmevC9pfXQ6DG33BBVpcZPjn3nbd-csxOjG0cXfzljb4vH1_w5WL08LfP5KsAokz7AUqtSGA3aQAiVzpQoCQUa0NJAiplJsKpQUmViJQ1KJUgo1CUkY5macMZudrsb238N5HzR1g6paXRH_eAKkaQyDce_sxG93aFoe-csmWJj61bbbSGg-PFW5NHy4ddbPsLXf7tD2VJ1QPeiRuBqB1iHh_ZffPgNtuBz5Q</recordid><startdate>20160418</startdate><enddate>20160418</enddate><creator>Schikora-Tamarit, Miquel ngel</creator><creator>Toscano-Ochoa, Carlos</creator><creator>Domingo Espins, Jlia</creator><creator>Espinar, Lorena</creator><creator>Carey, Lucas B</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7245-6379</orcidid></search><sort><creationdate>20160418</creationdate><title>A synthetic gene circuit for measuring autoregulatory feedback control</title><author>Schikora-Tamarit, Miquel ngel ; Toscano-Ochoa, Carlos ; Domingo Espins, Jlia ; Espinar, Lorena ; Carey, Lucas B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-cba4b1fa0af030da941bec1cf0a2f08c9f7cddc2edf642fc241e14cab078c98f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>3' Untranslated Regions</topic><topic>Cation Transport Proteins - genetics</topic><topic>Estradiol - genetics</topic><topic>Feedback, Physiological</topic><topic>Gene Regulatory Networks</topic><topic>Genes, Synthetic</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Models, Biological</topic><topic>Models, Theoretical</topic><topic>Molecular Chaperones - genetics</topic><topic>Promoter Regions, Genetic</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Synthetic Biology - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schikora-Tamarit, Miquel ngel</creatorcontrib><creatorcontrib>Toscano-Ochoa, Carlos</creatorcontrib><creatorcontrib>Domingo Espins, Jlia</creatorcontrib><creatorcontrib>Espinar, Lorena</creatorcontrib><creatorcontrib>Carey, Lucas B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Integrative biology (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schikora-Tamarit, Miquel ngel</au><au>Toscano-Ochoa, Carlos</au><au>Domingo Espins, Jlia</au><au>Espinar, Lorena</au><au>Carey, Lucas B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A synthetic gene circuit for measuring autoregulatory feedback control</atitle><jtitle>Integrative biology (Cambridge)</jtitle><addtitle>Integr Biol (Camb)</addtitle><date>2016-04-18</date><risdate>2016</risdate><volume>8</volume><issue>4</issue><spage>546</spage><epage>555</epage><pages>546-555</pages><issn>1757-9694</issn><eissn>1757-9708</eissn><abstract>Autoregulatory feedback loops occur in the regulation of molecules ranging from ATP to MAP kinases to zinc. Negative feedback loops can increase a system's robustness, while positive feedback loops can mediate transitions between cell states. Recent genome-wide experimental and computational studies predict hundreds of novel feedback loops. However, not all physical interactions are regulatory, and many experimental methods cannot detect self-interactions. Our understanding of regulatory feedback loops is therefore hampered by the lack of high-throughput methods to experimentally quantify the presence, strength and temporal dynamics of autoregulatory feedback loops. Here we present a mathematical and experimental framework for high-throughput quantification of feedback regulation and apply it to RNA binding proteins (RBPs) in yeast. Our method is able to determine the existence of both direct and indirect positive and negative feedback loops, and to quantify the strength of these loops. We experimentally validate our model using two RBPs which lack native feedback loops and by the introduction of synthetic feedback loops. We find that RBP Puf3 does not natively participate in any direct or indirect feedback regulation, but that replacing the native 3UTR with that of COX17 generates an auto-regulatory negative feedback loop which reduces gene expression noise. Likewise, RBP Pub1 does not natively participate in any feedback loops, but a synthetic positive feedback loop involving Pub1 results in increased expression noise. Our results demonstrate a synthetic experimental system for quantifying the existence and strength of feedback loops using a combination of high-throughput experiments and mathematical modeling. This system will be of great use in measuring auto-regulatory feedback by RNA binding proteins, a regulatory motif that is difficult to quantify using existing high-throughput methods. A synthetic gene circuit for quantifying the strength of native feedback regulation among the RNA binding proteins in yeast.</abstract><cop>England</cop><pmid>26728081</pmid><doi>10.1039/c5ib00230c</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7245-6379</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-9694
ispartof Integrative biology (Cambridge), 2016-04, Vol.8 (4), p.546-555
issn 1757-9694
1757-9708
language eng
recordid cdi_rsc_primary_c5ib00230c
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); Royal Society Of Chemistry Journals 2008-
subjects 3' Untranslated Regions
Cation Transport Proteins - genetics
Estradiol - genetics
Feedback, Physiological
Gene Regulatory Networks
Genes, Synthetic
Green Fluorescent Proteins - metabolism
Models, Biological
Models, Theoretical
Molecular Chaperones - genetics
Promoter Regions, Genetic
RNA-Binding Proteins - genetics
RNA-Binding Proteins - metabolism
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - genetics
Synthetic Biology - methods
title A synthetic gene circuit for measuring autoregulatory feedback control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A19%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20synthetic%20gene%20circuit%20for%20measuring%20autoregulatory%20feedback%20control&rft.jtitle=Integrative%20biology%20(Cambridge)&rft.au=Schikora-Tamarit,%20Miquel%20ngel&rft.date=2016-04-18&rft.volume=8&rft.issue=4&rft.spage=546&rft.epage=555&rft.pages=546-555&rft.issn=1757-9694&rft.eissn=1757-9708&rft_id=info:doi/10.1039/c5ib00230c&rft_dat=%3Cproquest_cross%3E1782831759%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1782831759&rft_id=info:pmid/26728081&rfr_iscdi=true