Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting

The feasibility of photoelectrochemical (PEC) water-splitting cells relies on the development of high-performance photoanodes. Significant progress has been made in the discovery of narrow bandgap semiconductors as promising photoanodes. However, the rational design of photoanode architecture that b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2016-01, Vol.9 (4), p.1327-1334
Hauptverfasser: Liu, Guiji, Ye, Sheng, Yan, Pengli, Xiong, Fengqiang, Fu, Ping, Wang, Zhiliang, Chen, Zheng, Shi, Jingying, Li, Can
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1334
container_issue 4
container_start_page 1327
container_title Energy & environmental science
container_volume 9
creator Liu, Guiji
Ye, Sheng
Yan, Pengli
Xiong, Fengqiang
Fu, Ping
Wang, Zhiliang
Chen, Zheng
Shi, Jingying
Li, Can
description The feasibility of photoelectrochemical (PEC) water-splitting cells relies on the development of high-performance photoanodes. Significant progress has been made in the discovery of narrow bandgap semiconductors as promising photoanodes. However, the rational design of photoanode architecture that brings the potentials of narrow bandgap semiconductors into fruition for efficient PEC water oxidation still remains a key challenge. Herein, we show a highly efficient photoanode system consisting of a tantalum nitride (Ta 3 N 5 ) semiconductor for light harvesting, hole-storage layers (Ni(OH) x /ferrhydrite) that mediate interfacial charge transfer from Ta 3 N 5 to coupled molecular catalysts (Co cubane and Ir complex) for water oxidation and a TiO x blocking layer that reduces the surface electronhole recombination. The integrated Ta 3 N 5 photoanode exhibits a record photocurrent of 12.1 mA cm 2 at 1.23 V vs. the reversible hydrogen electrode (RHE), which is nearly its theoretical photocurrent limit under sunlight (12.9 mA cm 2 ), suggesting that almost each pair of photogenerated charge carriers in Ta 3 N 5 has been efficiently extracted and collected for solar water splitting. The integrated architecture enables the Ta 3 N 5 photoanode to approach the theoretical photocurrent limit for solar water splitting.
doi_str_mv 10.1039/c5ee03802b
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c5ee03802b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904203640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-48ee5df9879eb320bf24bdbf25be82e7d03fbdb52a854f5add78ba632238676c3</originalsourceid><addsrcrecordid>eNqFkctLxDAQxosouK5evAs5irCa5tGmR13WByx40XNJ0-luJE1qkiLiP2_W-jh6mJlv4Mc3A1-Wneb4Mse0ulIcAFOBSbOXzfKSswUvcbH_o4uKHGZHIbxgXBBcVrPsY2VlY7TdIGmRthE2XkZoUZQ2SjP2yOrodQto2LropHVJRofkMHgn1RbFLezKeYhaSTNhavQebERG9zqiznkUnJEevSXrpAejY0wnj7ODTpoAJ99znj3frp6W94v1493D8nq9UIwUccEEAG-7SpQVNJTgpiOsaVPnDQgCZYtpl3ZOpOCs47JtS9HIghJCRVEWis6z88k3_fw6Qoh1r4MCY6QFN4Y6rzAjmBYM_4-KKhclI4wl9GJClXcheOjqwete-vc6x_UujHrJV6uvMG4SfDbBPqhf7i8s-gmqQomi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891874244</pqid></control><display><type>article</type><title>Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Liu, Guiji ; Ye, Sheng ; Yan, Pengli ; Xiong, Fengqiang ; Fu, Ping ; Wang, Zhiliang ; Chen, Zheng ; Shi, Jingying ; Li, Can</creator><creatorcontrib>Liu, Guiji ; Ye, Sheng ; Yan, Pengli ; Xiong, Fengqiang ; Fu, Ping ; Wang, Zhiliang ; Chen, Zheng ; Shi, Jingying ; Li, Can</creatorcontrib><description>The feasibility of photoelectrochemical (PEC) water-splitting cells relies on the development of high-performance photoanodes. Significant progress has been made in the discovery of narrow bandgap semiconductors as promising photoanodes. However, the rational design of photoanode architecture that brings the potentials of narrow bandgap semiconductors into fruition for efficient PEC water oxidation still remains a key challenge. Herein, we show a highly efficient photoanode system consisting of a tantalum nitride (Ta 3 N 5 ) semiconductor for light harvesting, hole-storage layers (Ni(OH) x /ferrhydrite) that mediate interfacial charge transfer from Ta 3 N 5 to coupled molecular catalysts (Co cubane and Ir complex) for water oxidation and a TiO x blocking layer that reduces the surface electronhole recombination. The integrated Ta 3 N 5 photoanode exhibits a record photocurrent of 12.1 mA cm 2 at 1.23 V vs. the reversible hydrogen electrode (RHE), which is nearly its theoretical photocurrent limit under sunlight (12.9 mA cm 2 ), suggesting that almost each pair of photogenerated charge carriers in Ta 3 N 5 has been efficiently extracted and collected for solar water splitting. The integrated architecture enables the Ta 3 N 5 photoanode to approach the theoretical photocurrent limit for solar water splitting.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c5ee03802b</identifier><language>eng</language><subject>Energy gaps (solid state) ; Oxidation ; Photocurrent ; Photoelectric effect ; Semiconductors ; Sunlight ; Tantalum nitrides ; Water splitting</subject><ispartof>Energy &amp; environmental science, 2016-01, Vol.9 (4), p.1327-1334</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-48ee5df9879eb320bf24bdbf25be82e7d03fbdb52a854f5add78ba632238676c3</citedby><cites>FETCH-LOGICAL-c426t-48ee5df9879eb320bf24bdbf25be82e7d03fbdb52a854f5add78ba632238676c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Guiji</creatorcontrib><creatorcontrib>Ye, Sheng</creatorcontrib><creatorcontrib>Yan, Pengli</creatorcontrib><creatorcontrib>Xiong, Fengqiang</creatorcontrib><creatorcontrib>Fu, Ping</creatorcontrib><creatorcontrib>Wang, Zhiliang</creatorcontrib><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Shi, Jingying</creatorcontrib><creatorcontrib>Li, Can</creatorcontrib><title>Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting</title><title>Energy &amp; environmental science</title><description>The feasibility of photoelectrochemical (PEC) water-splitting cells relies on the development of high-performance photoanodes. Significant progress has been made in the discovery of narrow bandgap semiconductors as promising photoanodes. However, the rational design of photoanode architecture that brings the potentials of narrow bandgap semiconductors into fruition for efficient PEC water oxidation still remains a key challenge. Herein, we show a highly efficient photoanode system consisting of a tantalum nitride (Ta 3 N 5 ) semiconductor for light harvesting, hole-storage layers (Ni(OH) x /ferrhydrite) that mediate interfacial charge transfer from Ta 3 N 5 to coupled molecular catalysts (Co cubane and Ir complex) for water oxidation and a TiO x blocking layer that reduces the surface electronhole recombination. The integrated Ta 3 N 5 photoanode exhibits a record photocurrent of 12.1 mA cm 2 at 1.23 V vs. the reversible hydrogen electrode (RHE), which is nearly its theoretical photocurrent limit under sunlight (12.9 mA cm 2 ), suggesting that almost each pair of photogenerated charge carriers in Ta 3 N 5 has been efficiently extracted and collected for solar water splitting. The integrated architecture enables the Ta 3 N 5 photoanode to approach the theoretical photocurrent limit for solar water splitting.</description><subject>Energy gaps (solid state)</subject><subject>Oxidation</subject><subject>Photocurrent</subject><subject>Photoelectric effect</subject><subject>Semiconductors</subject><subject>Sunlight</subject><subject>Tantalum nitrides</subject><subject>Water splitting</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkctLxDAQxosouK5evAs5irCa5tGmR13WByx40XNJ0-luJE1qkiLiP2_W-jh6mJlv4Mc3A1-Wneb4Mse0ulIcAFOBSbOXzfKSswUvcbH_o4uKHGZHIbxgXBBcVrPsY2VlY7TdIGmRthE2XkZoUZQ2SjP2yOrodQto2LropHVJRofkMHgn1RbFLezKeYhaSTNhavQebERG9zqiznkUnJEevSXrpAejY0wnj7ODTpoAJ99znj3frp6W94v1493D8nq9UIwUccEEAG-7SpQVNJTgpiOsaVPnDQgCZYtpl3ZOpOCs47JtS9HIghJCRVEWis6z88k3_fw6Qoh1r4MCY6QFN4Y6rzAjmBYM_4-KKhclI4wl9GJClXcheOjqwete-vc6x_UujHrJV6uvMG4SfDbBPqhf7i8s-gmqQomi</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Liu, Guiji</creator><creator>Ye, Sheng</creator><creator>Yan, Pengli</creator><creator>Xiong, Fengqiang</creator><creator>Fu, Ping</creator><creator>Wang, Zhiliang</creator><creator>Chen, Zheng</creator><creator>Shi, Jingying</creator><creator>Li, Can</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20160101</creationdate><title>Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting</title><author>Liu, Guiji ; Ye, Sheng ; Yan, Pengli ; Xiong, Fengqiang ; Fu, Ping ; Wang, Zhiliang ; Chen, Zheng ; Shi, Jingying ; Li, Can</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-48ee5df9879eb320bf24bdbf25be82e7d03fbdb52a854f5add78ba632238676c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Energy gaps (solid state)</topic><topic>Oxidation</topic><topic>Photocurrent</topic><topic>Photoelectric effect</topic><topic>Semiconductors</topic><topic>Sunlight</topic><topic>Tantalum nitrides</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Guiji</creatorcontrib><creatorcontrib>Ye, Sheng</creatorcontrib><creatorcontrib>Yan, Pengli</creatorcontrib><creatorcontrib>Xiong, Fengqiang</creatorcontrib><creatorcontrib>Fu, Ping</creatorcontrib><creatorcontrib>Wang, Zhiliang</creatorcontrib><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Shi, Jingying</creatorcontrib><creatorcontrib>Li, Can</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Guiji</au><au>Ye, Sheng</au><au>Yan, Pengli</au><au>Xiong, Fengqiang</au><au>Fu, Ping</au><au>Wang, Zhiliang</au><au>Chen, Zheng</au><au>Shi, Jingying</au><au>Li, Can</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>9</volume><issue>4</issue><spage>1327</spage><epage>1334</epage><pages>1327-1334</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>The feasibility of photoelectrochemical (PEC) water-splitting cells relies on the development of high-performance photoanodes. Significant progress has been made in the discovery of narrow bandgap semiconductors as promising photoanodes. However, the rational design of photoanode architecture that brings the potentials of narrow bandgap semiconductors into fruition for efficient PEC water oxidation still remains a key challenge. Herein, we show a highly efficient photoanode system consisting of a tantalum nitride (Ta 3 N 5 ) semiconductor for light harvesting, hole-storage layers (Ni(OH) x /ferrhydrite) that mediate interfacial charge transfer from Ta 3 N 5 to coupled molecular catalysts (Co cubane and Ir complex) for water oxidation and a TiO x blocking layer that reduces the surface electronhole recombination. The integrated Ta 3 N 5 photoanode exhibits a record photocurrent of 12.1 mA cm 2 at 1.23 V vs. the reversible hydrogen electrode (RHE), which is nearly its theoretical photocurrent limit under sunlight (12.9 mA cm 2 ), suggesting that almost each pair of photogenerated charge carriers in Ta 3 N 5 has been efficiently extracted and collected for solar water splitting. The integrated architecture enables the Ta 3 N 5 photoanode to approach the theoretical photocurrent limit for solar water splitting.</abstract><doi>10.1039/c5ee03802b</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2016-01, Vol.9 (4), p.1327-1334
issn 1754-5692
1754-5706
language eng
recordid cdi_rsc_primary_c5ee03802b
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Energy gaps (solid state)
Oxidation
Photocurrent
Photoelectric effect
Semiconductors
Sunlight
Tantalum nitrides
Water splitting
title Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enabling%20an%20integrated%20tantalum%20nitride%20photoanode%20to%20approach%20the%20theoretical%20photocurrent%20limit%20for%20solar%20water%20splitting&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Liu,%20Guiji&rft.date=2016-01-01&rft.volume=9&rft.issue=4&rft.spage=1327&rft.epage=1334&rft.pages=1327-1334&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c5ee03802b&rft_dat=%3Cproquest_rsc_p%3E1904203640%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891874244&rft_id=info:pmid/&rfr_iscdi=true