Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting
The feasibility of photoelectrochemical (PEC) water-splitting cells relies on the development of high-performance photoanodes. Significant progress has been made in the discovery of narrow bandgap semiconductors as promising photoanodes. However, the rational design of photoanode architecture that b...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2016-01, Vol.9 (4), p.1327-1334 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1334 |
---|---|
container_issue | 4 |
container_start_page | 1327 |
container_title | Energy & environmental science |
container_volume | 9 |
creator | Liu, Guiji Ye, Sheng Yan, Pengli Xiong, Fengqiang Fu, Ping Wang, Zhiliang Chen, Zheng Shi, Jingying Li, Can |
description | The feasibility of photoelectrochemical (PEC) water-splitting cells relies on the development of high-performance photoanodes. Significant progress has been made in the discovery of narrow bandgap semiconductors as promising photoanodes. However, the rational design of photoanode architecture that brings the potentials of narrow bandgap semiconductors into fruition for efficient PEC water oxidation still remains a key challenge. Herein, we show a highly efficient photoanode system consisting of a tantalum nitride (Ta
3
N
5
) semiconductor for light harvesting, hole-storage layers (Ni(OH)
x
/ferrhydrite) that mediate interfacial charge transfer from Ta
3
N
5
to coupled molecular catalysts (Co cubane and Ir complex) for water oxidation and a TiO
x
blocking layer that reduces the surface electronhole recombination. The integrated Ta
3
N
5
photoanode exhibits a record photocurrent of 12.1 mA cm
2
at 1.23 V
vs.
the reversible hydrogen electrode (RHE), which is nearly its theoretical photocurrent limit under sunlight (12.9 mA cm
2
), suggesting that almost each pair of photogenerated charge carriers in Ta
3
N
5
has been efficiently extracted and collected for solar water splitting.
The integrated architecture enables the Ta
3
N
5
photoanode to approach the theoretical photocurrent limit for solar water splitting. |
doi_str_mv | 10.1039/c5ee03802b |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c5ee03802b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904203640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-48ee5df9879eb320bf24bdbf25be82e7d03fbdb52a854f5add78ba632238676c3</originalsourceid><addsrcrecordid>eNqFkctLxDAQxosouK5evAs5irCa5tGmR13WByx40XNJ0-luJE1qkiLiP2_W-jh6mJlv4Mc3A1-Wneb4Mse0ulIcAFOBSbOXzfKSswUvcbH_o4uKHGZHIbxgXBBcVrPsY2VlY7TdIGmRthE2XkZoUZQ2SjP2yOrodQto2LropHVJRofkMHgn1RbFLezKeYhaSTNhavQebERG9zqiznkUnJEevSXrpAejY0wnj7ODTpoAJ99znj3frp6W94v1493D8nq9UIwUccEEAG-7SpQVNJTgpiOsaVPnDQgCZYtpl3ZOpOCs47JtS9HIghJCRVEWis6z88k3_fw6Qoh1r4MCY6QFN4Y6rzAjmBYM_4-KKhclI4wl9GJClXcheOjqwete-vc6x_UujHrJV6uvMG4SfDbBPqhf7i8s-gmqQomi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891874244</pqid></control><display><type>article</type><title>Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Liu, Guiji ; Ye, Sheng ; Yan, Pengli ; Xiong, Fengqiang ; Fu, Ping ; Wang, Zhiliang ; Chen, Zheng ; Shi, Jingying ; Li, Can</creator><creatorcontrib>Liu, Guiji ; Ye, Sheng ; Yan, Pengli ; Xiong, Fengqiang ; Fu, Ping ; Wang, Zhiliang ; Chen, Zheng ; Shi, Jingying ; Li, Can</creatorcontrib><description>The feasibility of photoelectrochemical (PEC) water-splitting cells relies on the development of high-performance photoanodes. Significant progress has been made in the discovery of narrow bandgap semiconductors as promising photoanodes. However, the rational design of photoanode architecture that brings the potentials of narrow bandgap semiconductors into fruition for efficient PEC water oxidation still remains a key challenge. Herein, we show a highly efficient photoanode system consisting of a tantalum nitride (Ta
3
N
5
) semiconductor for light harvesting, hole-storage layers (Ni(OH)
x
/ferrhydrite) that mediate interfacial charge transfer from Ta
3
N
5
to coupled molecular catalysts (Co cubane and Ir complex) for water oxidation and a TiO
x
blocking layer that reduces the surface electronhole recombination. The integrated Ta
3
N
5
photoanode exhibits a record photocurrent of 12.1 mA cm
2
at 1.23 V
vs.
the reversible hydrogen electrode (RHE), which is nearly its theoretical photocurrent limit under sunlight (12.9 mA cm
2
), suggesting that almost each pair of photogenerated charge carriers in Ta
3
N
5
has been efficiently extracted and collected for solar water splitting.
The integrated architecture enables the Ta
3
N
5
photoanode to approach the theoretical photocurrent limit for solar water splitting.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c5ee03802b</identifier><language>eng</language><subject>Energy gaps (solid state) ; Oxidation ; Photocurrent ; Photoelectric effect ; Semiconductors ; Sunlight ; Tantalum nitrides ; Water splitting</subject><ispartof>Energy & environmental science, 2016-01, Vol.9 (4), p.1327-1334</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-48ee5df9879eb320bf24bdbf25be82e7d03fbdb52a854f5add78ba632238676c3</citedby><cites>FETCH-LOGICAL-c426t-48ee5df9879eb320bf24bdbf25be82e7d03fbdb52a854f5add78ba632238676c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Guiji</creatorcontrib><creatorcontrib>Ye, Sheng</creatorcontrib><creatorcontrib>Yan, Pengli</creatorcontrib><creatorcontrib>Xiong, Fengqiang</creatorcontrib><creatorcontrib>Fu, Ping</creatorcontrib><creatorcontrib>Wang, Zhiliang</creatorcontrib><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Shi, Jingying</creatorcontrib><creatorcontrib>Li, Can</creatorcontrib><title>Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting</title><title>Energy & environmental science</title><description>The feasibility of photoelectrochemical (PEC) water-splitting cells relies on the development of high-performance photoanodes. Significant progress has been made in the discovery of narrow bandgap semiconductors as promising photoanodes. However, the rational design of photoanode architecture that brings the potentials of narrow bandgap semiconductors into fruition for efficient PEC water oxidation still remains a key challenge. Herein, we show a highly efficient photoanode system consisting of a tantalum nitride (Ta
3
N
5
) semiconductor for light harvesting, hole-storage layers (Ni(OH)
x
/ferrhydrite) that mediate interfacial charge transfer from Ta
3
N
5
to coupled molecular catalysts (Co cubane and Ir complex) for water oxidation and a TiO
x
blocking layer that reduces the surface electronhole recombination. The integrated Ta
3
N
5
photoanode exhibits a record photocurrent of 12.1 mA cm
2
at 1.23 V
vs.
the reversible hydrogen electrode (RHE), which is nearly its theoretical photocurrent limit under sunlight (12.9 mA cm
2
), suggesting that almost each pair of photogenerated charge carriers in Ta
3
N
5
has been efficiently extracted and collected for solar water splitting.
The integrated architecture enables the Ta
3
N
5
photoanode to approach the theoretical photocurrent limit for solar water splitting.</description><subject>Energy gaps (solid state)</subject><subject>Oxidation</subject><subject>Photocurrent</subject><subject>Photoelectric effect</subject><subject>Semiconductors</subject><subject>Sunlight</subject><subject>Tantalum nitrides</subject><subject>Water splitting</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkctLxDAQxosouK5evAs5irCa5tGmR13WByx40XNJ0-luJE1qkiLiP2_W-jh6mJlv4Mc3A1-Wneb4Mse0ulIcAFOBSbOXzfKSswUvcbH_o4uKHGZHIbxgXBBcVrPsY2VlY7TdIGmRthE2XkZoUZQ2SjP2yOrodQto2LropHVJRofkMHgn1RbFLezKeYhaSTNhavQebERG9zqiznkUnJEevSXrpAejY0wnj7ODTpoAJ99znj3frp6W94v1493D8nq9UIwUccEEAG-7SpQVNJTgpiOsaVPnDQgCZYtpl3ZOpOCs47JtS9HIghJCRVEWis6z88k3_fw6Qoh1r4MCY6QFN4Y6rzAjmBYM_4-KKhclI4wl9GJClXcheOjqwete-vc6x_UujHrJV6uvMG4SfDbBPqhf7i8s-gmqQomi</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Liu, Guiji</creator><creator>Ye, Sheng</creator><creator>Yan, Pengli</creator><creator>Xiong, Fengqiang</creator><creator>Fu, Ping</creator><creator>Wang, Zhiliang</creator><creator>Chen, Zheng</creator><creator>Shi, Jingying</creator><creator>Li, Can</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20160101</creationdate><title>Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting</title><author>Liu, Guiji ; Ye, Sheng ; Yan, Pengli ; Xiong, Fengqiang ; Fu, Ping ; Wang, Zhiliang ; Chen, Zheng ; Shi, Jingying ; Li, Can</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-48ee5df9879eb320bf24bdbf25be82e7d03fbdb52a854f5add78ba632238676c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Energy gaps (solid state)</topic><topic>Oxidation</topic><topic>Photocurrent</topic><topic>Photoelectric effect</topic><topic>Semiconductors</topic><topic>Sunlight</topic><topic>Tantalum nitrides</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Guiji</creatorcontrib><creatorcontrib>Ye, Sheng</creatorcontrib><creatorcontrib>Yan, Pengli</creatorcontrib><creatorcontrib>Xiong, Fengqiang</creatorcontrib><creatorcontrib>Fu, Ping</creatorcontrib><creatorcontrib>Wang, Zhiliang</creatorcontrib><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Shi, Jingying</creatorcontrib><creatorcontrib>Li, Can</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Guiji</au><au>Ye, Sheng</au><au>Yan, Pengli</au><au>Xiong, Fengqiang</au><au>Fu, Ping</au><au>Wang, Zhiliang</au><au>Chen, Zheng</au><au>Shi, Jingying</au><au>Li, Can</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting</atitle><jtitle>Energy & environmental science</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>9</volume><issue>4</issue><spage>1327</spage><epage>1334</epage><pages>1327-1334</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>The feasibility of photoelectrochemical (PEC) water-splitting cells relies on the development of high-performance photoanodes. Significant progress has been made in the discovery of narrow bandgap semiconductors as promising photoanodes. However, the rational design of photoanode architecture that brings the potentials of narrow bandgap semiconductors into fruition for efficient PEC water oxidation still remains a key challenge. Herein, we show a highly efficient photoanode system consisting of a tantalum nitride (Ta
3
N
5
) semiconductor for light harvesting, hole-storage layers (Ni(OH)
x
/ferrhydrite) that mediate interfacial charge transfer from Ta
3
N
5
to coupled molecular catalysts (Co cubane and Ir complex) for water oxidation and a TiO
x
blocking layer that reduces the surface electronhole recombination. The integrated Ta
3
N
5
photoanode exhibits a record photocurrent of 12.1 mA cm
2
at 1.23 V
vs.
the reversible hydrogen electrode (RHE), which is nearly its theoretical photocurrent limit under sunlight (12.9 mA cm
2
), suggesting that almost each pair of photogenerated charge carriers in Ta
3
N
5
has been efficiently extracted and collected for solar water splitting.
The integrated architecture enables the Ta
3
N
5
photoanode to approach the theoretical photocurrent limit for solar water splitting.</abstract><doi>10.1039/c5ee03802b</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2016-01, Vol.9 (4), p.1327-1334 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_rsc_primary_c5ee03802b |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Energy gaps (solid state) Oxidation Photocurrent Photoelectric effect Semiconductors Sunlight Tantalum nitrides Water splitting |
title | Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enabling%20an%20integrated%20tantalum%20nitride%20photoanode%20to%20approach%20the%20theoretical%20photocurrent%20limit%20for%20solar%20water%20splitting&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Liu,%20Guiji&rft.date=2016-01-01&rft.volume=9&rft.issue=4&rft.spage=1327&rft.epage=1334&rft.pages=1327-1334&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c5ee03802b&rft_dat=%3Cproquest_rsc_p%3E1904203640%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891874244&rft_id=info:pmid/&rfr_iscdi=true |