Impact electrochemistry: colloidal metal sulfide detection by cathodic particle coulometryElectronic supplementary information (ESI) available. See DOI: 10.1039/c5cp05004a

The determination of the size and concentration of colloidal nano and microparticles is of paramount importance to modern nanoscience. Application of the particle collision technique on metal and metal oxide nanoparticles has been intensively explored over the past decade owing to its ability to det...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lim, Chee Shan, Pumera, Martin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The determination of the size and concentration of colloidal nano and microparticles is of paramount importance to modern nanoscience. Application of the particle collision technique on metal and metal oxide nanoparticles has been intensively explored over the past decade owing to its ability to determine the particle size and concentration via reactions including the inherent oxidation or the reduction of nanoparticles as well as surface reactions catalysed by the nanoparticles. Transition metal dichalcogenide particles were previously quantified using the anodic (oxidative) particle coulometry method. Here we show that cathodic (reductive) particle coulometry can be favorably used for the detection of metal sulfide colloidal particles. The detection of sulfides of cobalt and lead was performed using the particle collision technique in this work. The presence of spikes confirmed the viability of detecting new and larger particles from compounds using reductive (cathodic) potentials. Such an expansion of the impact particle coulometry method will be useful and applicable to the determination of concentration and size of colloidal metal sulfide nanoparticles in general. Detection of colloidal CoS and PbS particles was performed by cathodic particle coulometry.
ISSN:1463-9076
1463-9084
DOI:10.1039/c5cp05004a