Lithium-doping inverts the nanoscale electric field at the grain boundaries in Cu2ZnSn(S,Se)4 and increases photovoltaic efficiencyElectronic supplementary information (ESI) available: X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma mass spectroscopy (ICPMS), drive-level capacitance profiling (DLCP), X-ray photoelectron spectroscopy (XPS), recrystallizaiton of thiourea, and Li doping concentration study. See DOI: 10.1039/c5cp04707b

Passive grain boundaries (GBs) are essential for polycrystalline solar cells to reach high efficiency. However, the GBs in Cu 2 ZnSn(S,Se) 4 have less favorable defect chemistry compared to CuInGaSe 2 . Here, using scanning probe microscopy we show that lithium doping of Cu 2 ZnSn(S,Se) 4 changes th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xin, H, Vorpahl, S. M, Collord, A. D, Braly, I. L, Uhl, A. R, Krueger, B. W, Ginger, D. S, Hillhouse, H. W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23866
container_issue 37
container_start_page 23859
container_title
container_volume 17
creator Xin, H
Vorpahl, S. M
Collord, A. D
Braly, I. L
Uhl, A. R
Krueger, B. W
Ginger, D. S
Hillhouse, H. W
description Passive grain boundaries (GBs) are essential for polycrystalline solar cells to reach high efficiency. However, the GBs in Cu 2 ZnSn(S,Se) 4 have less favorable defect chemistry compared to CuInGaSe 2 . Here, using scanning probe microscopy we show that lithium doping of Cu 2 ZnSn(S,Se) 4 changes the polarity of the electric field at the GB such that minority carrier electrons are repelled from the GB. Solar cells with lithium-doping show improved performance and yield a new efficiency record of 11.8% for hydrazine-free solution-processed Cu 2 ZnSn(S,Se) 4 . We propose that lithium competes for copper vacancies (forming benign isoelectronic Li Cu defects) decreasing the concentration of Zn Cu donors and competes for zinc vacancies (forming a Li Zn acceptor that is likely shallower than Cu Zn ). Both phenomena may explain the order of magnitude increase in conductivity. Further, the effects of lithium doping reported here establish that extrinsic species are able to alter the nanoscale electric fields near the GBs in Cu 2 ZnSn(S,Se) 4 . This will be essential for this low-cost Earth abundant element semiconductor to achieve efficiencies that compete with CuInGaSe 2 and CdTe. Lithium doping changes the electric field at the GBs and improves DMSO solution processed Cu 2 ZnSn(S,Se) 4 solar cell efficiency to 11.8%.
doi_str_mv 10.1039/c5cp04707b
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c5cp04707b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c5cp04707b</sourcerecordid><originalsourceid>FETCH-rsc_primary_c5cp04707b3</originalsourceid><addsrcrecordid>eNqFUkuLE0EQHkXB9XHxLpS3BDLrjMlu3L0mEQNZDI6H4CVUeqo3JT3dTXdPYPyr_hkrk7Aigp66qe9RVV93lr0ui8uyGN-8U1fKF5NpMd09zi7KyfU4vyk-TJ483KfXz7LnMX4viqK8KscXj36uOO25bfLaebb3wPZAIUVIewKL1kWFhoAMqRRYgWYyNWDq8fuAbGHnWltjYIoihln7_put7KAaVTScANpaqioQRsH93iV3cCahWJHWrJis6ha9u7NSjK33hhqyCUMnSu1Cg4mdhcGiWg4BD8gGd4ZuYZMH7KBmrQOqE2XzZT4cgYxs7XEXOvtCwyrIJs53MKgWd8JhW7ciOpDpQLlWetbgDcYGocEYIfpeetYsZ-u7SlR1EEVuSGSg0KPihFYR-OA0m2PLwXw1WwvzNFy_78MUf3pu1kfHQCp0MaEx_AM5CctpyZZdK5GN-vhWDOe3UU6a2RROgcTU1t0lVEQw_7y8hb-_wMvsqUYT6dX5fJG9-bj4OvuUh6i2PnAjGW9_08f_x9_-C9_6Wo9_AT902ME</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lithium-doping inverts the nanoscale electric field at the grain boundaries in Cu2ZnSn(S,Se)4 and increases photovoltaic efficiencyElectronic supplementary information (ESI) available: X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma mass spectroscopy (ICPMS), drive-level capacitance profiling (DLCP), X-ray photoelectron spectroscopy (XPS), recrystallizaiton of thiourea, and Li doping concentration study. See DOI: 10.1039/c5cp04707b</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Xin, H ; Vorpahl, S. M ; Collord, A. D ; Braly, I. L ; Uhl, A. R ; Krueger, B. W ; Ginger, D. S ; Hillhouse, H. W</creator><creatorcontrib>Xin, H ; Vorpahl, S. M ; Collord, A. D ; Braly, I. L ; Uhl, A. R ; Krueger, B. W ; Ginger, D. S ; Hillhouse, H. W</creatorcontrib><description>Passive grain boundaries (GBs) are essential for polycrystalline solar cells to reach high efficiency. However, the GBs in Cu 2 ZnSn(S,Se) 4 have less favorable defect chemistry compared to CuInGaSe 2 . Here, using scanning probe microscopy we show that lithium doping of Cu 2 ZnSn(S,Se) 4 changes the polarity of the electric field at the GB such that minority carrier electrons are repelled from the GB. Solar cells with lithium-doping show improved performance and yield a new efficiency record of 11.8% for hydrazine-free solution-processed Cu 2 ZnSn(S,Se) 4 . We propose that lithium competes for copper vacancies (forming benign isoelectronic Li Cu defects) decreasing the concentration of Zn Cu donors and competes for zinc vacancies (forming a Li Zn acceptor that is likely shallower than Cu Zn ). Both phenomena may explain the order of magnitude increase in conductivity. Further, the effects of lithium doping reported here establish that extrinsic species are able to alter the nanoscale electric fields near the GBs in Cu 2 ZnSn(S,Se) 4 . This will be essential for this low-cost Earth abundant element semiconductor to achieve efficiencies that compete with CuInGaSe 2 and CdTe. Lithium doping changes the electric field at the GBs and improves DMSO solution processed Cu 2 ZnSn(S,Se) 4 solar cell efficiency to 11.8%.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c5cp04707b</identifier><language>eng</language><creationdate>2015-09</creationdate><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xin, H</creatorcontrib><creatorcontrib>Vorpahl, S. M</creatorcontrib><creatorcontrib>Collord, A. D</creatorcontrib><creatorcontrib>Braly, I. L</creatorcontrib><creatorcontrib>Uhl, A. R</creatorcontrib><creatorcontrib>Krueger, B. W</creatorcontrib><creatorcontrib>Ginger, D. S</creatorcontrib><creatorcontrib>Hillhouse, H. W</creatorcontrib><title>Lithium-doping inverts the nanoscale electric field at the grain boundaries in Cu2ZnSn(S,Se)4 and increases photovoltaic efficiencyElectronic supplementary information (ESI) available: X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma mass spectroscopy (ICPMS), drive-level capacitance profiling (DLCP), X-ray photoelectron spectroscopy (XPS), recrystallizaiton of thiourea, and Li doping concentration study. See DOI: 10.1039/c5cp04707b</title><description>Passive grain boundaries (GBs) are essential for polycrystalline solar cells to reach high efficiency. However, the GBs in Cu 2 ZnSn(S,Se) 4 have less favorable defect chemistry compared to CuInGaSe 2 . Here, using scanning probe microscopy we show that lithium doping of Cu 2 ZnSn(S,Se) 4 changes the polarity of the electric field at the GB such that minority carrier electrons are repelled from the GB. Solar cells with lithium-doping show improved performance and yield a new efficiency record of 11.8% for hydrazine-free solution-processed Cu 2 ZnSn(S,Se) 4 . We propose that lithium competes for copper vacancies (forming benign isoelectronic Li Cu defects) decreasing the concentration of Zn Cu donors and competes for zinc vacancies (forming a Li Zn acceptor that is likely shallower than Cu Zn ). Both phenomena may explain the order of magnitude increase in conductivity. Further, the effects of lithium doping reported here establish that extrinsic species are able to alter the nanoscale electric fields near the GBs in Cu 2 ZnSn(S,Se) 4 . This will be essential for this low-cost Earth abundant element semiconductor to achieve efficiencies that compete with CuInGaSe 2 and CdTe. Lithium doping changes the electric field at the GBs and improves DMSO solution processed Cu 2 ZnSn(S,Se) 4 solar cell efficiency to 11.8%.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFUkuLE0EQHkXB9XHxLpS3BDLrjMlu3L0mEQNZDI6H4CVUeqo3JT3dTXdPYPyr_hkrk7Aigp66qe9RVV93lr0ui8uyGN-8U1fKF5NpMd09zi7KyfU4vyk-TJ483KfXz7LnMX4viqK8KscXj36uOO25bfLaebb3wPZAIUVIewKL1kWFhoAMqRRYgWYyNWDq8fuAbGHnWltjYIoihln7_put7KAaVTScANpaqioQRsH93iV3cCahWJHWrJis6ha9u7NSjK33hhqyCUMnSu1Cg4mdhcGiWg4BD8gGd4ZuYZMH7KBmrQOqE2XzZT4cgYxs7XEXOvtCwyrIJs53MKgWd8JhW7ciOpDpQLlWetbgDcYGocEYIfpeetYsZ-u7SlR1EEVuSGSg0KPihFYR-OA0m2PLwXw1WwvzNFy_78MUf3pu1kfHQCp0MaEx_AM5CctpyZZdK5GN-vhWDOe3UU6a2RROgcTU1t0lVEQw_7y8hb-_wMvsqUYT6dX5fJG9-bj4OvuUh6i2PnAjGW9_08f_x9_-C9_6Wo9_AT902ME</recordid><startdate>20150916</startdate><enddate>20150916</enddate><creator>Xin, H</creator><creator>Vorpahl, S. M</creator><creator>Collord, A. D</creator><creator>Braly, I. L</creator><creator>Uhl, A. R</creator><creator>Krueger, B. W</creator><creator>Ginger, D. S</creator><creator>Hillhouse, H. W</creator><scope/></search><sort><creationdate>20150916</creationdate><title>Lithium-doping inverts the nanoscale electric field at the grain boundaries in Cu2ZnSn(S,Se)4 and increases photovoltaic efficiencyElectronic supplementary information (ESI) available: X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma mass spectroscopy (ICPMS), drive-level capacitance profiling (DLCP), X-ray photoelectron spectroscopy (XPS), recrystallizaiton of thiourea, and Li doping concentration study. See DOI: 10.1039/c5cp04707b</title><author>Xin, H ; Vorpahl, S. M ; Collord, A. D ; Braly, I. L ; Uhl, A. R ; Krueger, B. W ; Ginger, D. S ; Hillhouse, H. W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c5cp04707b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xin, H</creatorcontrib><creatorcontrib>Vorpahl, S. M</creatorcontrib><creatorcontrib>Collord, A. D</creatorcontrib><creatorcontrib>Braly, I. L</creatorcontrib><creatorcontrib>Uhl, A. R</creatorcontrib><creatorcontrib>Krueger, B. W</creatorcontrib><creatorcontrib>Ginger, D. S</creatorcontrib><creatorcontrib>Hillhouse, H. W</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xin, H</au><au>Vorpahl, S. M</au><au>Collord, A. D</au><au>Braly, I. L</au><au>Uhl, A. R</au><au>Krueger, B. W</au><au>Ginger, D. S</au><au>Hillhouse, H. W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium-doping inverts the nanoscale electric field at the grain boundaries in Cu2ZnSn(S,Se)4 and increases photovoltaic efficiencyElectronic supplementary information (ESI) available: X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma mass spectroscopy (ICPMS), drive-level capacitance profiling (DLCP), X-ray photoelectron spectroscopy (XPS), recrystallizaiton of thiourea, and Li doping concentration study. See DOI: 10.1039/c5cp04707b</atitle><date>2015-09-16</date><risdate>2015</risdate><volume>17</volume><issue>37</issue><spage>23859</spage><epage>23866</epage><pages>23859-23866</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Passive grain boundaries (GBs) are essential for polycrystalline solar cells to reach high efficiency. However, the GBs in Cu 2 ZnSn(S,Se) 4 have less favorable defect chemistry compared to CuInGaSe 2 . Here, using scanning probe microscopy we show that lithium doping of Cu 2 ZnSn(S,Se) 4 changes the polarity of the electric field at the GB such that minority carrier electrons are repelled from the GB. Solar cells with lithium-doping show improved performance and yield a new efficiency record of 11.8% for hydrazine-free solution-processed Cu 2 ZnSn(S,Se) 4 . We propose that lithium competes for copper vacancies (forming benign isoelectronic Li Cu defects) decreasing the concentration of Zn Cu donors and competes for zinc vacancies (forming a Li Zn acceptor that is likely shallower than Cu Zn ). Both phenomena may explain the order of magnitude increase in conductivity. Further, the effects of lithium doping reported here establish that extrinsic species are able to alter the nanoscale electric fields near the GBs in Cu 2 ZnSn(S,Se) 4 . This will be essential for this low-cost Earth abundant element semiconductor to achieve efficiencies that compete with CuInGaSe 2 and CdTe. Lithium doping changes the electric field at the GBs and improves DMSO solution processed Cu 2 ZnSn(S,Se) 4 solar cell efficiency to 11.8%.</abstract><doi>10.1039/c5cp04707b</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof
issn 1463-9076
1463-9084
language eng
recordid cdi_rsc_primary_c5cp04707b
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Lithium-doping inverts the nanoscale electric field at the grain boundaries in Cu2ZnSn(S,Se)4 and increases photovoltaic efficiencyElectronic supplementary information (ESI) available: X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma mass spectroscopy (ICPMS), drive-level capacitance profiling (DLCP), X-ray photoelectron spectroscopy (XPS), recrystallizaiton of thiourea, and Li doping concentration study. See DOI: 10.1039/c5cp04707b
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium-doping%20inverts%20the%20nanoscale%20electric%20field%20at%20the%20grain%20boundaries%20in%20Cu2ZnSn(S,Se)4%20and%20increases%20photovoltaic%20efficiencyElectronic%20supplementary%20information%20(ESI)%20available:%20X-ray%20diffraction%20(XRD),%20scanning%20electron%20microscopy%20(SEM),%20inductively%20coupled%20plasma%20mass%20spectroscopy%20(ICPMS),%20drive-level%20capacitance%20profiling%20(DLCP),%20X-ray%20photoelectron%20spectroscopy%20(XPS),%20recrystallizaiton%20of%20thiourea,%20and%20Li%20doping%20concentration%20study.%20See%20DOI:%2010.1039/c5cp04707b&rft.au=Xin,%20H&rft.date=2015-09-16&rft.volume=17&rft.issue=37&rft.spage=23859&rft.epage=23866&rft.pages=23859-23866&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c5cp04707b&rft_dat=%3Crsc%3Ec5cp04707b%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true