Toward low-sensitive and high-energetic cocrystal III: thermodynamics of energetic-energetic cocrystal formationElectronic supplementary information (ESI) available: It contains geometries of hydrogen bonds in β-CL-20 and CL-20-based EECCs, geometries of O O contacts in BTF and BTF-based EECCs, and a summary of synthesis conditions of observed EECCs. See DOI: 10.1039/c5ce02009c

Energetic cocrystallization is a promising crystal engineering method for energetic materials. However, the current yield of energetic-energetic cocrystals (EECCs) remains very limited largely as a result of inefficient EECC screening. Therefore, the crystallization thermodynamics of EECCs must be p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wei, Xianfeng, Zhang, Anbang, Ma, Yu, Xue, Xianggui, Zhou, Junhong, Zhu, Yuanqiang, Zhang, Chaoyang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 947
container_issue 47
container_start_page 937
container_title
container_volume 17
creator Wei, Xianfeng
Zhang, Anbang
Ma, Yu
Xue, Xianggui
Zhou, Junhong
Zhu, Yuanqiang
Zhang, Chaoyang
description Energetic cocrystallization is a promising crystal engineering method for energetic materials. However, the current yield of energetic-energetic cocrystals (EECCs) remains very limited largely as a result of inefficient EECC screening. Therefore, the crystallization thermodynamics of EECCs must be predicted; this process is the core of the screening procedure. The present work provides insight into the intermolecular interactions of and variations in lattice energy, enthalpy, and Gibbs free energy following the crystallization of observed and supposed EECCs. Moreover, this research clarifies the difference in the solubility parameters of each pair of coformers. As a result, formation is predicted to be thermodynamically favored for most observed and supposed EECCs. The dominance of entropy is more sufficient than that of enthalpy; this dominance is mainly caused by the structural similarity in energetic molecules that either produce little heat or absorb heat if an intermolecular rearrangement is observed to transform pure crystals into cocrystals. Implicitly, EECCs can be formed efficiently when confusion degrees or spatial molecular configurations increase, thus guaranteeing entropy dominance. Thermodynamics of the energetic-energetic cocrystal formation.
doi_str_mv 10.1039/c5ce02009c
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c5ce02009c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c5ce02009c</sourcerecordid><originalsourceid>FETCH-rsc_primary_c5ce02009c3</originalsourceid><addsrcrecordid>eNqFkc9Kw0AQxqMgWKsX78J4UzB109RiezSmGBB6aO9ls5kkK8lu2VkrOfhSPojP5CZoxT8oe5hl5vt9MzvreccBGwQsnFyKK4FsyNhE7Hq9YDQe-9csDPe9A6IHxoJRELDezvNSP3GTQaWffEJF0soNAlcZlLIofVRoCrRSgNDCNGR5BUmSTMGWaGqdNYrXUhDoHLbSX6Fcm5pbqVVcobBGK1elx_W6whqV5aYBqbYaOIsXyTnwDZcVTyucQmKdl9NJRVCgrtEaiV3bssmMLlBBqlVGzgVeX_zo3h-y7hXdzU85YQZxHEV08Y2fu9NZC9vRN8tZB7r4FWuT3M1c1-20jqRGuS2QpJbPZDt456hTQrP5AAewQITbudvZz4859PZyXhEevce-dzKLl9Gdb0is1ka2rVaf8rDvnf5VX62zPPzP4w24g7IP</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Toward low-sensitive and high-energetic cocrystal III: thermodynamics of energetic-energetic cocrystal formationElectronic supplementary information (ESI) available: It contains geometries of hydrogen bonds in β-CL-20 and CL-20-based EECCs, geometries of O O contacts in BTF and BTF-based EECCs, and a summary of synthesis conditions of observed EECCs. See DOI: 10.1039/c5ce02009c</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wei, Xianfeng ; Zhang, Anbang ; Ma, Yu ; Xue, Xianggui ; Zhou, Junhong ; Zhu, Yuanqiang ; Zhang, Chaoyang</creator><creatorcontrib>Wei, Xianfeng ; Zhang, Anbang ; Ma, Yu ; Xue, Xianggui ; Zhou, Junhong ; Zhu, Yuanqiang ; Zhang, Chaoyang</creatorcontrib><description>Energetic cocrystallization is a promising crystal engineering method for energetic materials. However, the current yield of energetic-energetic cocrystals (EECCs) remains very limited largely as a result of inefficient EECC screening. Therefore, the crystallization thermodynamics of EECCs must be predicted; this process is the core of the screening procedure. The present work provides insight into the intermolecular interactions of and variations in lattice energy, enthalpy, and Gibbs free energy following the crystallization of observed and supposed EECCs. Moreover, this research clarifies the difference in the solubility parameters of each pair of coformers. As a result, formation is predicted to be thermodynamically favored for most observed and supposed EECCs. The dominance of entropy is more sufficient than that of enthalpy; this dominance is mainly caused by the structural similarity in energetic molecules that either produce little heat or absorb heat if an intermolecular rearrangement is observed to transform pure crystals into cocrystals. Implicitly, EECCs can be formed efficiently when confusion degrees or spatial molecular configurations increase, thus guaranteeing entropy dominance. Thermodynamics of the energetic-energetic cocrystal formation.</description><identifier>EISSN: 1466-8033</identifier><identifier>DOI: 10.1039/c5ce02009c</identifier><language>eng</language><creationdate>2015-11</creationdate><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wei, Xianfeng</creatorcontrib><creatorcontrib>Zhang, Anbang</creatorcontrib><creatorcontrib>Ma, Yu</creatorcontrib><creatorcontrib>Xue, Xianggui</creatorcontrib><creatorcontrib>Zhou, Junhong</creatorcontrib><creatorcontrib>Zhu, Yuanqiang</creatorcontrib><creatorcontrib>Zhang, Chaoyang</creatorcontrib><title>Toward low-sensitive and high-energetic cocrystal III: thermodynamics of energetic-energetic cocrystal formationElectronic supplementary information (ESI) available: It contains geometries of hydrogen bonds in β-CL-20 and CL-20-based EECCs, geometries of O O contacts in BTF and BTF-based EECCs, and a summary of synthesis conditions of observed EECCs. See DOI: 10.1039/c5ce02009c</title><description>Energetic cocrystallization is a promising crystal engineering method for energetic materials. However, the current yield of energetic-energetic cocrystals (EECCs) remains very limited largely as a result of inefficient EECC screening. Therefore, the crystallization thermodynamics of EECCs must be predicted; this process is the core of the screening procedure. The present work provides insight into the intermolecular interactions of and variations in lattice energy, enthalpy, and Gibbs free energy following the crystallization of observed and supposed EECCs. Moreover, this research clarifies the difference in the solubility parameters of each pair of coformers. As a result, formation is predicted to be thermodynamically favored for most observed and supposed EECCs. The dominance of entropy is more sufficient than that of enthalpy; this dominance is mainly caused by the structural similarity in energetic molecules that either produce little heat or absorb heat if an intermolecular rearrangement is observed to transform pure crystals into cocrystals. Implicitly, EECCs can be formed efficiently when confusion degrees or spatial molecular configurations increase, thus guaranteeing entropy dominance. Thermodynamics of the energetic-energetic cocrystal formation.</description><issn>1466-8033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFkc9Kw0AQxqMgWKsX78J4UzB109RiezSmGBB6aO9ls5kkK8lu2VkrOfhSPojP5CZoxT8oe5hl5vt9MzvreccBGwQsnFyKK4FsyNhE7Hq9YDQe-9csDPe9A6IHxoJRELDezvNSP3GTQaWffEJF0soNAlcZlLIofVRoCrRSgNDCNGR5BUmSTMGWaGqdNYrXUhDoHLbSX6Fcm5pbqVVcobBGK1elx_W6whqV5aYBqbYaOIsXyTnwDZcVTyucQmKdl9NJRVCgrtEaiV3bssmMLlBBqlVGzgVeX_zo3h-y7hXdzU85YQZxHEV08Y2fu9NZC9vRN8tZB7r4FWuT3M1c1-20jqRGuS2QpJbPZDt456hTQrP5AAewQITbudvZz4859PZyXhEevce-dzKLl9Gdb0is1ka2rVaf8rDvnf5VX62zPPzP4w24g7IP</recordid><startdate>20151125</startdate><enddate>20151125</enddate><creator>Wei, Xianfeng</creator><creator>Zhang, Anbang</creator><creator>Ma, Yu</creator><creator>Xue, Xianggui</creator><creator>Zhou, Junhong</creator><creator>Zhu, Yuanqiang</creator><creator>Zhang, Chaoyang</creator><scope/></search><sort><creationdate>20151125</creationdate><title>Toward low-sensitive and high-energetic cocrystal III: thermodynamics of energetic-energetic cocrystal formationElectronic supplementary information (ESI) available: It contains geometries of hydrogen bonds in β-CL-20 and CL-20-based EECCs, geometries of O O contacts in BTF and BTF-based EECCs, and a summary of synthesis conditions of observed EECCs. See DOI: 10.1039/c5ce02009c</title><author>Wei, Xianfeng ; Zhang, Anbang ; Ma, Yu ; Xue, Xianggui ; Zhou, Junhong ; Zhu, Yuanqiang ; Zhang, Chaoyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c5ce02009c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Xianfeng</creatorcontrib><creatorcontrib>Zhang, Anbang</creatorcontrib><creatorcontrib>Ma, Yu</creatorcontrib><creatorcontrib>Xue, Xianggui</creatorcontrib><creatorcontrib>Zhou, Junhong</creatorcontrib><creatorcontrib>Zhu, Yuanqiang</creatorcontrib><creatorcontrib>Zhang, Chaoyang</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Xianfeng</au><au>Zhang, Anbang</au><au>Ma, Yu</au><au>Xue, Xianggui</au><au>Zhou, Junhong</au><au>Zhu, Yuanqiang</au><au>Zhang, Chaoyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward low-sensitive and high-energetic cocrystal III: thermodynamics of energetic-energetic cocrystal formationElectronic supplementary information (ESI) available: It contains geometries of hydrogen bonds in β-CL-20 and CL-20-based EECCs, geometries of O O contacts in BTF and BTF-based EECCs, and a summary of synthesis conditions of observed EECCs. See DOI: 10.1039/c5ce02009c</atitle><date>2015-11-25</date><risdate>2015</risdate><volume>17</volume><issue>47</issue><spage>937</spage><epage>947</epage><pages>937-947</pages><eissn>1466-8033</eissn><abstract>Energetic cocrystallization is a promising crystal engineering method for energetic materials. However, the current yield of energetic-energetic cocrystals (EECCs) remains very limited largely as a result of inefficient EECC screening. Therefore, the crystallization thermodynamics of EECCs must be predicted; this process is the core of the screening procedure. The present work provides insight into the intermolecular interactions of and variations in lattice energy, enthalpy, and Gibbs free energy following the crystallization of observed and supposed EECCs. Moreover, this research clarifies the difference in the solubility parameters of each pair of coformers. As a result, formation is predicted to be thermodynamically favored for most observed and supposed EECCs. The dominance of entropy is more sufficient than that of enthalpy; this dominance is mainly caused by the structural similarity in energetic molecules that either produce little heat or absorb heat if an intermolecular rearrangement is observed to transform pure crystals into cocrystals. Implicitly, EECCs can be formed efficiently when confusion degrees or spatial molecular configurations increase, thus guaranteeing entropy dominance. Thermodynamics of the energetic-energetic cocrystal formation.</abstract><doi>10.1039/c5ce02009c</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1466-8033
ispartof
issn 1466-8033
language eng
recordid cdi_rsc_primary_c5ce02009c
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Toward low-sensitive and high-energetic cocrystal III: thermodynamics of energetic-energetic cocrystal formationElectronic supplementary information (ESI) available: It contains geometries of hydrogen bonds in β-CL-20 and CL-20-based EECCs, geometries of O O contacts in BTF and BTF-based EECCs, and a summary of synthesis conditions of observed EECCs. See DOI: 10.1039/c5ce02009c
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T08%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20low-sensitive%20and%20high-energetic%20cocrystal%20III:%20thermodynamics%20of%20energetic-energetic%20cocrystal%20formationElectronic%20supplementary%20information%20(ESI)%20available:%20It%20contains%20geometries%20of%20hydrogen%20bonds%20in%20%CE%B2-CL-20%20and%20CL-20-based%20EECCs,%20geometries%20of%20O%20O%20contacts%20in%20BTF%20and%20BTF-based%20EECCs,%20and%20a%20summary%20of%20synthesis%20conditions%20of%20observed%20EECCs.%20See%20DOI:%2010.1039/c5ce02009c&rft.au=Wei,%20Xianfeng&rft.date=2015-11-25&rft.volume=17&rft.issue=47&rft.spage=937&rft.epage=947&rft.pages=937-947&rft.eissn=1466-8033&rft_id=info:doi/10.1039/c5ce02009c&rft_dat=%3Crsc%3Ec5ce02009c%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true