Dynamic control of Förster energy transfer in a photonic environment

In this study, the effect of modified optical density of states on the rate of Förster resonant energy transfer between two closely-spaced chromophores is investigated. A model based on a system of coupled rate equations is derived to predict the influence of the environment on the molecular system....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2014-07, Vol.16 (25), p.12812-12817
Hauptverfasser: Schleifenbaum, Frank, Kern, Andreas M, Konrad, Alexander, Meixner, Alfred J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12817
container_issue 25
container_start_page 12812
container_title Physical chemistry chemical physics : PCCP
container_volume 16
creator Schleifenbaum, Frank
Kern, Andreas M
Konrad, Alexander
Meixner, Alfred J
description In this study, the effect of modified optical density of states on the rate of Förster resonant energy transfer between two closely-spaced chromophores is investigated. A model based on a system of coupled rate equations is derived to predict the influence of the environment on the molecular system. Due to the near-field character of Förster transfer, the corresponding rate constant is shown to be nearly independent of the optical mode density. An optical resonator can, however, effectively modify the donor and acceptor populations, leading to a dramatic change in the Förster transfer rate. Single-molecule measurements on the autofluorescent protein DsRed using a λ /2-microresonator are presented and compared to the theoretical model's predictions. The observed resonator-induced dequenching of the donor subunit in DsRed is accurately reproduced by the model, allowing a direct measurement of the Förster transfer rate in this otherwise inseparable multichromophoric system. With this accurate yet simple theoretical framework, new experiments can be conceived to measure normally obscured energy transfer channels in complex coupled quantum systems, e.g. in photovoltaics or light harvesting complexes. We study experimentally and theoretically how Förster resonant energy transfer can be controlled in a tunable λ /2 optical microresonator.
doi_str_mv 10.1039/c4cp01306a
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c4cp01306a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551058732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-d1222b55601e4d1fc92412abcc1ad571713d3c9e98caf4c51123b4ecd1ed83ab3</originalsourceid><addsrcrecordid>eNqNkc1OwzAQhC0EoqVw4Q4KN4QU8PonP8cqtICEBAc4R47tQFBiB9tF6ovxArwYgZZyQ5x2V_PtHGYQOgR8DpjmF5LJHgPFidhCY2AJjXOcse3NniYjtOf9C8YYONBdNCIsYzhlMEazy6URXSMjaU1wto1sHc0_3p0P2kXaaPe0jIITxtfD3ZhIRP2zDdYMH9q8Nc6aTpuwj3Zq0Xp9sJ4T9DifPRTX8e3d1U0xvY0lwyzECgghFecJBs0U1DInDIiopASheAopUEVlrvNMippJDkBoxbRUoFVGRUUn6HTl2zv7utA-lF3jpW5bYbRd-BI4B8yzlJJ_oJThnNEkGdCzFSqd9d7puuxd0wm3LAGXXwmXBSvuvxOeDvDx2ndRdVpt0J9IB-BoBTgvN-pvRYN-8pde9qqmnwL4i4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534094366</pqid></control><display><type>article</type><title>Dynamic control of Förster energy transfer in a photonic environment</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Schleifenbaum, Frank ; Kern, Andreas M ; Konrad, Alexander ; Meixner, Alfred J</creator><creatorcontrib>Schleifenbaum, Frank ; Kern, Andreas M ; Konrad, Alexander ; Meixner, Alfred J</creatorcontrib><description>In this study, the effect of modified optical density of states on the rate of Förster resonant energy transfer between two closely-spaced chromophores is investigated. A model based on a system of coupled rate equations is derived to predict the influence of the environment on the molecular system. Due to the near-field character of Förster transfer, the corresponding rate constant is shown to be nearly independent of the optical mode density. An optical resonator can, however, effectively modify the donor and acceptor populations, leading to a dramatic change in the Förster transfer rate. Single-molecule measurements on the autofluorescent protein DsRed using a λ /2-microresonator are presented and compared to the theoretical model's predictions. The observed resonator-induced dequenching of the donor subunit in DsRed is accurately reproduced by the model, allowing a direct measurement of the Förster transfer rate in this otherwise inseparable multichromophoric system. With this accurate yet simple theoretical framework, new experiments can be conceived to measure normally obscured energy transfer channels in complex coupled quantum systems, e.g. in photovoltaics or light harvesting complexes. We study experimentally and theoretically how Förster resonant energy transfer can be controlled in a tunable λ /2 optical microresonator.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c4cp01306a</identifier><identifier>PMID: 24840741</identifier><language>eng</language><publisher>England</publisher><subject>Channels ; Density ; Dynamical systems ; Energy transfer ; Mathematical models ; Optical resonators ; Photonics ; Rate constants</subject><ispartof>Physical chemistry chemical physics : PCCP, 2014-07, Vol.16 (25), p.12812-12817</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-d1222b55601e4d1fc92412abcc1ad571713d3c9e98caf4c51123b4ecd1ed83ab3</citedby><cites>FETCH-LOGICAL-c404t-d1222b55601e4d1fc92412abcc1ad571713d3c9e98caf4c51123b4ecd1ed83ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24840741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schleifenbaum, Frank</creatorcontrib><creatorcontrib>Kern, Andreas M</creatorcontrib><creatorcontrib>Konrad, Alexander</creatorcontrib><creatorcontrib>Meixner, Alfred J</creatorcontrib><title>Dynamic control of Förster energy transfer in a photonic environment</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>In this study, the effect of modified optical density of states on the rate of Förster resonant energy transfer between two closely-spaced chromophores is investigated. A model based on a system of coupled rate equations is derived to predict the influence of the environment on the molecular system. Due to the near-field character of Förster transfer, the corresponding rate constant is shown to be nearly independent of the optical mode density. An optical resonator can, however, effectively modify the donor and acceptor populations, leading to a dramatic change in the Förster transfer rate. Single-molecule measurements on the autofluorescent protein DsRed using a λ /2-microresonator are presented and compared to the theoretical model's predictions. The observed resonator-induced dequenching of the donor subunit in DsRed is accurately reproduced by the model, allowing a direct measurement of the Förster transfer rate in this otherwise inseparable multichromophoric system. With this accurate yet simple theoretical framework, new experiments can be conceived to measure normally obscured energy transfer channels in complex coupled quantum systems, e.g. in photovoltaics or light harvesting complexes. We study experimentally and theoretically how Förster resonant energy transfer can be controlled in a tunable λ /2 optical microresonator.</description><subject>Channels</subject><subject>Density</subject><subject>Dynamical systems</subject><subject>Energy transfer</subject><subject>Mathematical models</subject><subject>Optical resonators</subject><subject>Photonics</subject><subject>Rate constants</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkc1OwzAQhC0EoqVw4Q4KN4QU8PonP8cqtICEBAc4R47tQFBiB9tF6ovxArwYgZZyQ5x2V_PtHGYQOgR8DpjmF5LJHgPFidhCY2AJjXOcse3NniYjtOf9C8YYONBdNCIsYzhlMEazy6URXSMjaU1wto1sHc0_3p0P2kXaaPe0jIITxtfD3ZhIRP2zDdYMH9q8Nc6aTpuwj3Zq0Xp9sJ4T9DifPRTX8e3d1U0xvY0lwyzECgghFecJBs0U1DInDIiopASheAopUEVlrvNMippJDkBoxbRUoFVGRUUn6HTl2zv7utA-lF3jpW5bYbRd-BI4B8yzlJJ_oJThnNEkGdCzFSqd9d7puuxd0wm3LAGXXwmXBSvuvxOeDvDx2ndRdVpt0J9IB-BoBTgvN-pvRYN-8pde9qqmnwL4i4w</recordid><startdate>20140707</startdate><enddate>20140707</enddate><creator>Schleifenbaum, Frank</creator><creator>Kern, Andreas M</creator><creator>Konrad, Alexander</creator><creator>Meixner, Alfred J</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20140707</creationdate><title>Dynamic control of Förster energy transfer in a photonic environment</title><author>Schleifenbaum, Frank ; Kern, Andreas M ; Konrad, Alexander ; Meixner, Alfred J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-d1222b55601e4d1fc92412abcc1ad571713d3c9e98caf4c51123b4ecd1ed83ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Channels</topic><topic>Density</topic><topic>Dynamical systems</topic><topic>Energy transfer</topic><topic>Mathematical models</topic><topic>Optical resonators</topic><topic>Photonics</topic><topic>Rate constants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schleifenbaum, Frank</creatorcontrib><creatorcontrib>Kern, Andreas M</creatorcontrib><creatorcontrib>Konrad, Alexander</creatorcontrib><creatorcontrib>Meixner, Alfred J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schleifenbaum, Frank</au><au>Kern, Andreas M</au><au>Konrad, Alexander</au><au>Meixner, Alfred J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic control of Förster energy transfer in a photonic environment</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2014-07-07</date><risdate>2014</risdate><volume>16</volume><issue>25</issue><spage>12812</spage><epage>12817</epage><pages>12812-12817</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>In this study, the effect of modified optical density of states on the rate of Förster resonant energy transfer between two closely-spaced chromophores is investigated. A model based on a system of coupled rate equations is derived to predict the influence of the environment on the molecular system. Due to the near-field character of Förster transfer, the corresponding rate constant is shown to be nearly independent of the optical mode density. An optical resonator can, however, effectively modify the donor and acceptor populations, leading to a dramatic change in the Förster transfer rate. Single-molecule measurements on the autofluorescent protein DsRed using a λ /2-microresonator are presented and compared to the theoretical model's predictions. The observed resonator-induced dequenching of the donor subunit in DsRed is accurately reproduced by the model, allowing a direct measurement of the Förster transfer rate in this otherwise inseparable multichromophoric system. With this accurate yet simple theoretical framework, new experiments can be conceived to measure normally obscured energy transfer channels in complex coupled quantum systems, e.g. in photovoltaics or light harvesting complexes. We study experimentally and theoretically how Förster resonant energy transfer can be controlled in a tunable λ /2 optical microresonator.</abstract><cop>England</cop><pmid>24840741</pmid><doi>10.1039/c4cp01306a</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2014-07, Vol.16 (25), p.12812-12817
issn 1463-9076
1463-9084
language eng
recordid cdi_rsc_primary_c4cp01306a
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Channels
Density
Dynamical systems
Energy transfer
Mathematical models
Optical resonators
Photonics
Rate constants
title Dynamic control of Förster energy transfer in a photonic environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A49%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20control%20of%20F%C3%B6rster%20energy%20transfer%20in%20a%20photonic%20environment&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Schleifenbaum,%20Frank&rft.date=2014-07-07&rft.volume=16&rft.issue=25&rft.spage=12812&rft.epage=12817&rft.pages=12812-12817&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c4cp01306a&rft_dat=%3Cproquest_rsc_p%3E1551058732%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1534094366&rft_id=info:pmid/24840741&rfr_iscdi=true