pH-dependent nano-capturing of tartaric acid using dendrimersElectronic supplementary information (ESI) available. See DOI: 10.1039/c3sm52255e

The ability of dendrimers to bind to various target molecules through non-covalent interactions was used to capture water soluble organic reagents, such as tartaric acid (TA), from different matrices, i.e. aqueous solutions and wine samples. The influence of the pH, dendrimer type, generation and fe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schramm, Oana G, López-Cortés, Xaviera, Santos, Leonardo S, Laurie, V. Felipe, González Nilo, Fernando Danilo, Krolik, Michal, Fischer, Rainer, Di Fiore, Stefano
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue 4
container_start_page 6
container_title
container_volume 1
creator Schramm, Oana G
López-Cortés, Xaviera
Santos, Leonardo S
Laurie, V. Felipe
González Nilo, Fernando Danilo
Krolik, Michal
Fischer, Rainer
Di Fiore, Stefano
description The ability of dendrimers to bind to various target molecules through non-covalent interactions was used to capture water soluble organic reagents, such as tartaric acid (TA), from different matrices, i.e. aqueous solutions and wine samples. The influence of the pH, dendrimer type, generation and feeding concentration on the host-guest complexation of TA was investigated. The maximum binding capacity of TA in aqueous solutions was achieved by amine end-capped dendrimers at pH 5. At extreme pH values of 2 and 11, the binding of TA dropped strikingly, demonstrating the pH-dependency underlying the host-guest interactions. The linear correlation between the maximum binding capacity of TA at pH 5 and the number of primary amine groups on the surface of PAMAM and PPI dendrimers strongly indicated that host-guest complex formation between TA and dendrimers is largely dependent on electrostatic interactions. Molecular simulations confirmed the predominant electrostatic nature of the interactions between TA and the amine end-capped dendrimers and also provided important information on the spatial distribution of TA within the PAMAM G5 dendrimer. All these results designate dendrimers as potential nano-capturing systems for the removal/recovery of TA from complex matrices such as wine, industrial waste or fruit juices. We describe a new dendrimer-based approach for the pH-dependent removal/recovery of tartaric acid from complex matrices, such as wine.
doi_str_mv 10.1039/c3sm52255e
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c3sm52255e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c3sm52255e</sourcerecordid><originalsourceid>FETCH-rsc_primary_c3sm52255e3</originalsourceid><addsrcrecordid>eNqFjkFLAzEQhUNRaK1eehfGmx627ja7dfWqK-3JQz14W8ZktkSySUiygn-iv7kRxB4KCgPzmPf43jA2K_J5kfP7W8FDXy0WVUUjNinuyjJb1mV98qv525idhfCR57wui-WE7dwqk-TISDIRDBqbCXRx8MpswXYQ0adRAlAoCUP4Pqeo9KonHxpNInprkh8G5zT1iYL-C5TprO8xKmvgutmsbwA_UWl81zSHDRE8vawf4Pjrc3baoQ508bOn7PK5eX1cZT6I1qXSBG8PcT5lV3_5rZMd_4-xB2mFYP0</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>pH-dependent nano-capturing of tartaric acid using dendrimersElectronic supplementary information (ESI) available. See DOI: 10.1039/c3sm52255e</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Schramm, Oana G ; López-Cortés, Xaviera ; Santos, Leonardo S ; Laurie, V. Felipe ; González Nilo, Fernando Danilo ; Krolik, Michal ; Fischer, Rainer ; Di Fiore, Stefano</creator><creatorcontrib>Schramm, Oana G ; López-Cortés, Xaviera ; Santos, Leonardo S ; Laurie, V. Felipe ; González Nilo, Fernando Danilo ; Krolik, Michal ; Fischer, Rainer ; Di Fiore, Stefano</creatorcontrib><description>The ability of dendrimers to bind to various target molecules through non-covalent interactions was used to capture water soluble organic reagents, such as tartaric acid (TA), from different matrices, i.e. aqueous solutions and wine samples. The influence of the pH, dendrimer type, generation and feeding concentration on the host-guest complexation of TA was investigated. The maximum binding capacity of TA in aqueous solutions was achieved by amine end-capped dendrimers at pH 5. At extreme pH values of 2 and 11, the binding of TA dropped strikingly, demonstrating the pH-dependency underlying the host-guest interactions. The linear correlation between the maximum binding capacity of TA at pH 5 and the number of primary amine groups on the surface of PAMAM and PPI dendrimers strongly indicated that host-guest complex formation between TA and dendrimers is largely dependent on electrostatic interactions. Molecular simulations confirmed the predominant electrostatic nature of the interactions between TA and the amine end-capped dendrimers and also provided important information on the spatial distribution of TA within the PAMAM G5 dendrimer. All these results designate dendrimers as potential nano-capturing systems for the removal/recovery of TA from complex matrices such as wine, industrial waste or fruit juices. We describe a new dendrimer-based approach for the pH-dependent removal/recovery of tartaric acid from complex matrices, such as wine.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c3sm52255e</identifier><language>eng</language><creationdate>2013-12</creationdate><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Schramm, Oana G</creatorcontrib><creatorcontrib>López-Cortés, Xaviera</creatorcontrib><creatorcontrib>Santos, Leonardo S</creatorcontrib><creatorcontrib>Laurie, V. Felipe</creatorcontrib><creatorcontrib>González Nilo, Fernando Danilo</creatorcontrib><creatorcontrib>Krolik, Michal</creatorcontrib><creatorcontrib>Fischer, Rainer</creatorcontrib><creatorcontrib>Di Fiore, Stefano</creatorcontrib><title>pH-dependent nano-capturing of tartaric acid using dendrimersElectronic supplementary information (ESI) available. See DOI: 10.1039/c3sm52255e</title><description>The ability of dendrimers to bind to various target molecules through non-covalent interactions was used to capture water soluble organic reagents, such as tartaric acid (TA), from different matrices, i.e. aqueous solutions and wine samples. The influence of the pH, dendrimer type, generation and feeding concentration on the host-guest complexation of TA was investigated. The maximum binding capacity of TA in aqueous solutions was achieved by amine end-capped dendrimers at pH 5. At extreme pH values of 2 and 11, the binding of TA dropped strikingly, demonstrating the pH-dependency underlying the host-guest interactions. The linear correlation between the maximum binding capacity of TA at pH 5 and the number of primary amine groups on the surface of PAMAM and PPI dendrimers strongly indicated that host-guest complex formation between TA and dendrimers is largely dependent on electrostatic interactions. Molecular simulations confirmed the predominant electrostatic nature of the interactions between TA and the amine end-capped dendrimers and also provided important information on the spatial distribution of TA within the PAMAM G5 dendrimer. All these results designate dendrimers as potential nano-capturing systems for the removal/recovery of TA from complex matrices such as wine, industrial waste or fruit juices. We describe a new dendrimer-based approach for the pH-dependent removal/recovery of tartaric acid from complex matrices, such as wine.</description><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjkFLAzEQhUNRaK1eehfGmx627ja7dfWqK-3JQz14W8ZktkSySUiygn-iv7kRxB4KCgPzmPf43jA2K_J5kfP7W8FDXy0WVUUjNinuyjJb1mV98qv525idhfCR57wui-WE7dwqk-TISDIRDBqbCXRx8MpswXYQ0adRAlAoCUP4Pqeo9KonHxpNInprkh8G5zT1iYL-C5TprO8xKmvgutmsbwA_UWl81zSHDRE8vawf4Pjrc3baoQ508bOn7PK5eX1cZT6I1qXSBG8PcT5lV3_5rZMd_4-xB2mFYP0</recordid><startdate>20131223</startdate><enddate>20131223</enddate><creator>Schramm, Oana G</creator><creator>López-Cortés, Xaviera</creator><creator>Santos, Leonardo S</creator><creator>Laurie, V. Felipe</creator><creator>González Nilo, Fernando Danilo</creator><creator>Krolik, Michal</creator><creator>Fischer, Rainer</creator><creator>Di Fiore, Stefano</creator><scope/></search><sort><creationdate>20131223</creationdate><title>pH-dependent nano-capturing of tartaric acid using dendrimersElectronic supplementary information (ESI) available. See DOI: 10.1039/c3sm52255e</title><author>Schramm, Oana G ; López-Cortés, Xaviera ; Santos, Leonardo S ; Laurie, V. Felipe ; González Nilo, Fernando Danilo ; Krolik, Michal ; Fischer, Rainer ; Di Fiore, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c3sm52255e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schramm, Oana G</creatorcontrib><creatorcontrib>López-Cortés, Xaviera</creatorcontrib><creatorcontrib>Santos, Leonardo S</creatorcontrib><creatorcontrib>Laurie, V. Felipe</creatorcontrib><creatorcontrib>González Nilo, Fernando Danilo</creatorcontrib><creatorcontrib>Krolik, Michal</creatorcontrib><creatorcontrib>Fischer, Rainer</creatorcontrib><creatorcontrib>Di Fiore, Stefano</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schramm, Oana G</au><au>López-Cortés, Xaviera</au><au>Santos, Leonardo S</au><au>Laurie, V. Felipe</au><au>González Nilo, Fernando Danilo</au><au>Krolik, Michal</au><au>Fischer, Rainer</au><au>Di Fiore, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>pH-dependent nano-capturing of tartaric acid using dendrimersElectronic supplementary information (ESI) available. See DOI: 10.1039/c3sm52255e</atitle><date>2013-12-23</date><risdate>2013</risdate><volume>1</volume><issue>4</issue><spage>6</spage><epage>68</epage><pages>6-68</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>The ability of dendrimers to bind to various target molecules through non-covalent interactions was used to capture water soluble organic reagents, such as tartaric acid (TA), from different matrices, i.e. aqueous solutions and wine samples. The influence of the pH, dendrimer type, generation and feeding concentration on the host-guest complexation of TA was investigated. The maximum binding capacity of TA in aqueous solutions was achieved by amine end-capped dendrimers at pH 5. At extreme pH values of 2 and 11, the binding of TA dropped strikingly, demonstrating the pH-dependency underlying the host-guest interactions. The linear correlation between the maximum binding capacity of TA at pH 5 and the number of primary amine groups on the surface of PAMAM and PPI dendrimers strongly indicated that host-guest complex formation between TA and dendrimers is largely dependent on electrostatic interactions. Molecular simulations confirmed the predominant electrostatic nature of the interactions between TA and the amine end-capped dendrimers and also provided important information on the spatial distribution of TA within the PAMAM G5 dendrimer. All these results designate dendrimers as potential nano-capturing systems for the removal/recovery of TA from complex matrices such as wine, industrial waste or fruit juices. We describe a new dendrimer-based approach for the pH-dependent removal/recovery of tartaric acid from complex matrices, such as wine.</abstract><doi>10.1039/c3sm52255e</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof
issn 1744-683X
1744-6848
language eng
recordid cdi_rsc_primary_c3sm52255e
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title pH-dependent nano-capturing of tartaric acid using dendrimersElectronic supplementary information (ESI) available. See DOI: 10.1039/c3sm52255e
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A38%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=pH-dependent%20nano-capturing%20of%20tartaric%20acid%20using%20dendrimersElectronic%20supplementary%20information%20(ESI)%20available.%20See%20DOI:%2010.1039/c3sm52255e&rft.au=Schramm,%20Oana%20G&rft.date=2013-12-23&rft.volume=1&rft.issue=4&rft.spage=6&rft.epage=68&rft.pages=6-68&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c3sm52255e&rft_dat=%3Crsc%3Ec3sm52255e%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true