Nanostructured N-doped TiO2 marigold flowers for an efficient solar hydrogen production from H2SElectronic supplementary information (ESI) available: GC-MS graph of the filtrate obtained in solvothermal reaction after 16 h and FESEM images without guanidine carbonate for 16 h. See DOI: 10.1039/c3nr02975a

Nitrogen-doped TiO 2 nanostructures in the form of marigold flowers have been synthesized for the first time using a facile solvothermal method. The structural analysis has shown that such an N-doped TiO 2 system crystallizes in the anatase structure. The optical absorption spectra have clearly show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chaudhari, Nilima S, Warule, Sambhaji S, Dhanmane, Sushil A, Kulkarni, Milind V, Valant, Matjaz, Kale, Bharat B
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 939
container_issue 19
container_start_page 9383
container_title
container_volume 5
creator Chaudhari, Nilima S
Warule, Sambhaji S
Dhanmane, Sushil A
Kulkarni, Milind V
Valant, Matjaz
Kale, Bharat B
description Nitrogen-doped TiO 2 nanostructures in the form of marigold flowers have been synthesized for the first time using a facile solvothermal method. The structural analysis has shown that such an N-doped TiO 2 system crystallizes in the anatase structure. The optical absorption spectra have clearly shown the shift in the absorption edge towards the visible-light range, which indicates successful nitrogen doping. The nitrogen doping has been further confirmed by photoluminescence and photoemission spectroscopy. Microscopy studies have shown the thin nanosheets (petals) of N-TiO 2 with a thickness of ∼2-3 nm, assembled in the form of the marigold flower with a high surface area (224 m 2 g −1 ). The N-TiO 2 nanostructure with marigold flowers is an efficient photocatalyst for the decomposition of H 2 S and production of hydrogen under solar light. The maximum hydrogen evolution obtained is higher than other known N-TiO 2 systems. It is noteworthy that photohydrogen production using the unique marigold flowers of N-TiO 2 from abundant H 2 S under solar light is hitherto unattempted. The proposed synthesis method can also be utilized to design other hierarchical nanostructured N-doped metal oxides. The architectured design of N-doped TiO 2 marigold flowers for ecofriendly H 2 production from photocatalytic splitting of hazardous H 2 S under solar light.
doi_str_mv 10.1039/c3nr02975a
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c3nr02975a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c3nr02975a</sourcerecordid><originalsourceid>FETCH-rsc_primary_c3nr02975a3</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxQMCCSgs7EjHBkNKPkqrdi0p7dB2SPfqGtuJkWNHZ6dV_3scQDAgwXQnvbvfe3dBcBtH_ThKx09FqilKxqNnPA0uk2gQhWk6Ss6---HgIriy9i2KhuN0mF6exCvUxjpqC9cSZ7AKmWl83ch1AjWSLI1iIJQ5cLIgDAFq4ELIQnLtwBqFBNWRkSm5hoYM8yRpNAgyNcyTPFO8cGS0LMC2TaN47feQjiC1p9X4MfyQ5YtHwD1KhTvFJ_A6DZc5lIRNBUaAqzgIqRyh42B2DqX2GaXu_PfGqx6kgDh-eqNwnCAeQuXTMphlebYEWWPJLRykq0zroGxRS-Y5UCDtjO7I3XndVh9yzuFlvZjA78deB-cCleU3X7UX3M2yzXQeki22DXkbOm5_xtNecP-Xvm2YSP9jvAOWwpmZ</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanostructured N-doped TiO2 marigold flowers for an efficient solar hydrogen production from H2SElectronic supplementary information (ESI) available: GC-MS graph of the filtrate obtained in solvothermal reaction after 16 h and FESEM images without guanidine carbonate for 16 h. See DOI: 10.1039/c3nr02975a</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Chaudhari, Nilima S ; Warule, Sambhaji S ; Dhanmane, Sushil A ; Kulkarni, Milind V ; Valant, Matjaz ; Kale, Bharat B</creator><creatorcontrib>Chaudhari, Nilima S ; Warule, Sambhaji S ; Dhanmane, Sushil A ; Kulkarni, Milind V ; Valant, Matjaz ; Kale, Bharat B</creatorcontrib><description>Nitrogen-doped TiO 2 nanostructures in the form of marigold flowers have been synthesized for the first time using a facile solvothermal method. The structural analysis has shown that such an N-doped TiO 2 system crystallizes in the anatase structure. The optical absorption spectra have clearly shown the shift in the absorption edge towards the visible-light range, which indicates successful nitrogen doping. The nitrogen doping has been further confirmed by photoluminescence and photoemission spectroscopy. Microscopy studies have shown the thin nanosheets (petals) of N-TiO 2 with a thickness of ∼2-3 nm, assembled in the form of the marigold flower with a high surface area (224 m 2 g −1 ). The N-TiO 2 nanostructure with marigold flowers is an efficient photocatalyst for the decomposition of H 2 S and production of hydrogen under solar light. The maximum hydrogen evolution obtained is higher than other known N-TiO 2 systems. It is noteworthy that photohydrogen production using the unique marigold flowers of N-TiO 2 from abundant H 2 S under solar light is hitherto unattempted. The proposed synthesis method can also be utilized to design other hierarchical nanostructured N-doped metal oxides. The architectured design of N-doped TiO 2 marigold flowers for ecofriendly H 2 production from photocatalytic splitting of hazardous H 2 S under solar light.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c3nr02975a</identifier><language>eng</language><creationdate>2013-09</creationdate><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chaudhari, Nilima S</creatorcontrib><creatorcontrib>Warule, Sambhaji S</creatorcontrib><creatorcontrib>Dhanmane, Sushil A</creatorcontrib><creatorcontrib>Kulkarni, Milind V</creatorcontrib><creatorcontrib>Valant, Matjaz</creatorcontrib><creatorcontrib>Kale, Bharat B</creatorcontrib><title>Nanostructured N-doped TiO2 marigold flowers for an efficient solar hydrogen production from H2SElectronic supplementary information (ESI) available: GC-MS graph of the filtrate obtained in solvothermal reaction after 16 h and FESEM images without guanidine carbonate for 16 h. See DOI: 10.1039/c3nr02975a</title><description>Nitrogen-doped TiO 2 nanostructures in the form of marigold flowers have been synthesized for the first time using a facile solvothermal method. The structural analysis has shown that such an N-doped TiO 2 system crystallizes in the anatase structure. The optical absorption spectra have clearly shown the shift in the absorption edge towards the visible-light range, which indicates successful nitrogen doping. The nitrogen doping has been further confirmed by photoluminescence and photoemission spectroscopy. Microscopy studies have shown the thin nanosheets (petals) of N-TiO 2 with a thickness of ∼2-3 nm, assembled in the form of the marigold flower with a high surface area (224 m 2 g −1 ). The N-TiO 2 nanostructure with marigold flowers is an efficient photocatalyst for the decomposition of H 2 S and production of hydrogen under solar light. The maximum hydrogen evolution obtained is higher than other known N-TiO 2 systems. It is noteworthy that photohydrogen production using the unique marigold flowers of N-TiO 2 from abundant H 2 S under solar light is hitherto unattempted. The proposed synthesis method can also be utilized to design other hierarchical nanostructured N-doped metal oxides. The architectured design of N-doped TiO 2 marigold flowers for ecofriendly H 2 production from photocatalytic splitting of hazardous H 2 S under solar light.</description><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFkL1PwzAQxQMCCSgs7EjHBkNKPkqrdi0p7dB2SPfqGtuJkWNHZ6dV_3scQDAgwXQnvbvfe3dBcBtH_ThKx09FqilKxqNnPA0uk2gQhWk6Ss6---HgIriy9i2KhuN0mF6exCvUxjpqC9cSZ7AKmWl83ch1AjWSLI1iIJQ5cLIgDAFq4ELIQnLtwBqFBNWRkSm5hoYM8yRpNAgyNcyTPFO8cGS0LMC2TaN47feQjiC1p9X4MfyQ5YtHwD1KhTvFJ_A6DZc5lIRNBUaAqzgIqRyh42B2DqX2GaXu_PfGqx6kgDh-eqNwnCAeQuXTMphlebYEWWPJLRykq0zroGxRS-Y5UCDtjO7I3XndVh9yzuFlvZjA78deB-cCleU3X7UX3M2yzXQeki22DXkbOm5_xtNecP-Xvm2YSP9jvAOWwpmZ</recordid><startdate>20130913</startdate><enddate>20130913</enddate><creator>Chaudhari, Nilima S</creator><creator>Warule, Sambhaji S</creator><creator>Dhanmane, Sushil A</creator><creator>Kulkarni, Milind V</creator><creator>Valant, Matjaz</creator><creator>Kale, Bharat B</creator><scope/></search><sort><creationdate>20130913</creationdate><title>Nanostructured N-doped TiO2 marigold flowers for an efficient solar hydrogen production from H2SElectronic supplementary information (ESI) available: GC-MS graph of the filtrate obtained in solvothermal reaction after 16 h and FESEM images without guanidine carbonate for 16 h. See DOI: 10.1039/c3nr02975a</title><author>Chaudhari, Nilima S ; Warule, Sambhaji S ; Dhanmane, Sushil A ; Kulkarni, Milind V ; Valant, Matjaz ; Kale, Bharat B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c3nr02975a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaudhari, Nilima S</creatorcontrib><creatorcontrib>Warule, Sambhaji S</creatorcontrib><creatorcontrib>Dhanmane, Sushil A</creatorcontrib><creatorcontrib>Kulkarni, Milind V</creatorcontrib><creatorcontrib>Valant, Matjaz</creatorcontrib><creatorcontrib>Kale, Bharat B</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaudhari, Nilima S</au><au>Warule, Sambhaji S</au><au>Dhanmane, Sushil A</au><au>Kulkarni, Milind V</au><au>Valant, Matjaz</au><au>Kale, Bharat B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructured N-doped TiO2 marigold flowers for an efficient solar hydrogen production from H2SElectronic supplementary information (ESI) available: GC-MS graph of the filtrate obtained in solvothermal reaction after 16 h and FESEM images without guanidine carbonate for 16 h. See DOI: 10.1039/c3nr02975a</atitle><date>2013-09-13</date><risdate>2013</risdate><volume>5</volume><issue>19</issue><spage>9383</spage><epage>939</epage><pages>9383-939</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Nitrogen-doped TiO 2 nanostructures in the form of marigold flowers have been synthesized for the first time using a facile solvothermal method. The structural analysis has shown that such an N-doped TiO 2 system crystallizes in the anatase structure. The optical absorption spectra have clearly shown the shift in the absorption edge towards the visible-light range, which indicates successful nitrogen doping. The nitrogen doping has been further confirmed by photoluminescence and photoemission spectroscopy. Microscopy studies have shown the thin nanosheets (petals) of N-TiO 2 with a thickness of ∼2-3 nm, assembled in the form of the marigold flower with a high surface area (224 m 2 g −1 ). The N-TiO 2 nanostructure with marigold flowers is an efficient photocatalyst for the decomposition of H 2 S and production of hydrogen under solar light. The maximum hydrogen evolution obtained is higher than other known N-TiO 2 systems. It is noteworthy that photohydrogen production using the unique marigold flowers of N-TiO 2 from abundant H 2 S under solar light is hitherto unattempted. The proposed synthesis method can also be utilized to design other hierarchical nanostructured N-doped metal oxides. The architectured design of N-doped TiO 2 marigold flowers for ecofriendly H 2 production from photocatalytic splitting of hazardous H 2 S under solar light.</abstract><doi>10.1039/c3nr02975a</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof
issn 2040-3364
2040-3372
language eng
recordid cdi_rsc_primary_c3nr02975a
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
title Nanostructured N-doped TiO2 marigold flowers for an efficient solar hydrogen production from H2SElectronic supplementary information (ESI) available: GC-MS graph of the filtrate obtained in solvothermal reaction after 16 h and FESEM images without guanidine carbonate for 16 h. See DOI: 10.1039/c3nr02975a
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T23%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructured%20N-doped%20TiO2%20marigold%20flowers%20for%20an%20efficient%20solar%20hydrogen%20production%20from%20H2SElectronic%20supplementary%20information%20(ESI)%20available:%20GC-MS%20graph%20of%20the%20filtrate%20obtained%20in%20solvothermal%20reaction%20after%2016%20h%20and%20FESEM%20images%20without%20guanidine%20carbonate%20for%2016%20h.%20See%20DOI:%2010.1039/c3nr02975a&rft.au=Chaudhari,%20Nilima%20S&rft.date=2013-09-13&rft.volume=5&rft.issue=19&rft.spage=9383&rft.epage=939&rft.pages=9383-939&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c3nr02975a&rft_dat=%3Crsc%3Ec3nr02975a%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true