Detecting chirality in molecules by imaging photoelectron circular dichroism
In this Perspective we discuss photoelectron circular dichroism (PECD), a relatively novel technique that can detect chiral molecules with high sensitivity. PECD has an enantiomeric sensitivity of typically 1-10%, which is two to three orders of magnitude larger than that of the widely employed tech...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2014-01, Vol.16 (3), p.856-871 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 871 |
---|---|
container_issue | 3 |
container_start_page | 856 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 16 |
creator | Janssen, Maurice H. M Powis, Ivan |
description | In this Perspective we discuss photoelectron circular dichroism (PECD), a relatively novel technique that can detect chiral molecules with high sensitivity. PECD has an enantiomeric sensitivity of typically 1-10%, which is two to three orders of magnitude larger than that of the widely employed technique of circular dichroism (CD). In PECD a chiral molecule is photoionized with circular polarized light, and the photoelectron angular scattering distribution is detected using particle imaging techniques. We present the general physical principles of photoelectron circular dichroism and we address both single- and multiphoton excitation. PECD has been measured with synchrotron radiation in single-photon ionization as well as, very recently, with femtosecond laser radiation in multiphoton ionization. We discuss the experimental implementation of PECD, focusing on velocity map coincidence imaging where the momentum distribution of both the electron and the coincident ion is measured. The coincident detection of the mass and momentum of the ion adds very powerful mass-correlated information to the PECD measurement of the chiral molecule. We illustrate the capabilities and the potential of PECD with various experimental examples and introduce computational methods that are able to model quantitatively experimental PECD results. We conclude with an outlook on novel developments and (analytical) implementations of PECD that may further broaden the application of PECD for the sensitive detection of chirality in molecules.
A perspective is given on photoelectron circular dichroism, capable of distinguishing enantiomers of chiral molecules with high sensitivity and mass selectivity. |
doi_str_mv | 10.1039/c3cp53741b |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c3cp53741b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671556278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-2e90ad1ceb3528c7bcae72f4902ae2c621102bb61715d842eaa8db33d6185d823</originalsourceid><addsrcrecordid>eNqFkbtPwzAQxi0EolBY2EFhQ0gBP-NkhPCUKsEAc2Q7l9YoL-xk6H-PS0vZYLrH97uT7juETgi-Iphl14aZXjDJid5BB4QnLM5wyne3uUwm6ND7D4wxEYTtownlDItMiAM0u4MBzGDbeWQW1qnaDsvItlHT1WDGGnykQ92o-YroF93QQRAG17WRsS4QykWlNQvXWd8cob1K1R6ON3GK3h_u3_KnePby-JzfzGLDpRhiChlWJTGgmaCpkdookLTiGaYKqEkoIZhqnRBJRJlyCkqlpWasTEgaGpRN0cV6b--6zxH8UDTWG6hr1UI3-oIkYVIkVKb_o1xKIVKRsYBerlHjOu8dVEXvwuVuWRBcrIwucpa_fht9G-Czzd5RN1Bu0R9nA3C6Bpw3W_X3U0E__0sv-rJiX0QZjfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1477558593</pqid></control><display><type>article</type><title>Detecting chirality in molecules by imaging photoelectron circular dichroism</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Janssen, Maurice H. M ; Powis, Ivan</creator><creatorcontrib>Janssen, Maurice H. M ; Powis, Ivan</creatorcontrib><description>In this Perspective we discuss photoelectron circular dichroism (PECD), a relatively novel technique that can detect chiral molecules with high sensitivity. PECD has an enantiomeric sensitivity of typically 1-10%, which is two to three orders of magnitude larger than that of the widely employed technique of circular dichroism (CD). In PECD a chiral molecule is photoionized with circular polarized light, and the photoelectron angular scattering distribution is detected using particle imaging techniques. We present the general physical principles of photoelectron circular dichroism and we address both single- and multiphoton excitation. PECD has been measured with synchrotron radiation in single-photon ionization as well as, very recently, with femtosecond laser radiation in multiphoton ionization. We discuss the experimental implementation of PECD, focusing on velocity map coincidence imaging where the momentum distribution of both the electron and the coincident ion is measured. The coincident detection of the mass and momentum of the ion adds very powerful mass-correlated information to the PECD measurement of the chiral molecule. We illustrate the capabilities and the potential of PECD with various experimental examples and introduce computational methods that are able to model quantitatively experimental PECD results. We conclude with an outlook on novel developments and (analytical) implementations of PECD that may further broaden the application of PECD for the sensitive detection of chirality in molecules.
A perspective is given on photoelectron circular dichroism, capable of distinguishing enantiomers of chiral molecules with high sensitivity and mass selectivity.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c3cp53741b</identifier><identifier>PMID: 24305955</identifier><language>eng</language><publisher>England</publisher><subject>Chirality ; Circularity ; Dichroism ; Femtosecond ; Imaging ; Ionization ; Mathematical analysis ; Photoelectrons</subject><ispartof>Physical chemistry chemical physics : PCCP, 2014-01, Vol.16 (3), p.856-871</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-2e90ad1ceb3528c7bcae72f4902ae2c621102bb61715d842eaa8db33d6185d823</citedby><cites>FETCH-LOGICAL-c475t-2e90ad1ceb3528c7bcae72f4902ae2c621102bb61715d842eaa8db33d6185d823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24305955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Janssen, Maurice H. M</creatorcontrib><creatorcontrib>Powis, Ivan</creatorcontrib><title>Detecting chirality in molecules by imaging photoelectron circular dichroism</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>In this Perspective we discuss photoelectron circular dichroism (PECD), a relatively novel technique that can detect chiral molecules with high sensitivity. PECD has an enantiomeric sensitivity of typically 1-10%, which is two to three orders of magnitude larger than that of the widely employed technique of circular dichroism (CD). In PECD a chiral molecule is photoionized with circular polarized light, and the photoelectron angular scattering distribution is detected using particle imaging techniques. We present the general physical principles of photoelectron circular dichroism and we address both single- and multiphoton excitation. PECD has been measured with synchrotron radiation in single-photon ionization as well as, very recently, with femtosecond laser radiation in multiphoton ionization. We discuss the experimental implementation of PECD, focusing on velocity map coincidence imaging where the momentum distribution of both the electron and the coincident ion is measured. The coincident detection of the mass and momentum of the ion adds very powerful mass-correlated information to the PECD measurement of the chiral molecule. We illustrate the capabilities and the potential of PECD with various experimental examples and introduce computational methods that are able to model quantitatively experimental PECD results. We conclude with an outlook on novel developments and (analytical) implementations of PECD that may further broaden the application of PECD for the sensitive detection of chirality in molecules.
A perspective is given on photoelectron circular dichroism, capable of distinguishing enantiomers of chiral molecules with high sensitivity and mass selectivity.</description><subject>Chirality</subject><subject>Circularity</subject><subject>Dichroism</subject><subject>Femtosecond</subject><subject>Imaging</subject><subject>Ionization</subject><subject>Mathematical analysis</subject><subject>Photoelectrons</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkbtPwzAQxi0EolBY2EFhQ0gBP-NkhPCUKsEAc2Q7l9YoL-xk6H-PS0vZYLrH97uT7juETgi-Iphl14aZXjDJid5BB4QnLM5wyne3uUwm6ND7D4wxEYTtownlDItMiAM0u4MBzGDbeWQW1qnaDsvItlHT1WDGGnykQ92o-YroF93QQRAG17WRsS4QykWlNQvXWd8cob1K1R6ON3GK3h_u3_KnePby-JzfzGLDpRhiChlWJTGgmaCpkdookLTiGaYKqEkoIZhqnRBJRJlyCkqlpWasTEgaGpRN0cV6b--6zxH8UDTWG6hr1UI3-oIkYVIkVKb_o1xKIVKRsYBerlHjOu8dVEXvwuVuWRBcrIwucpa_fht9G-Czzd5RN1Bu0R9nA3C6Bpw3W_X3U0E__0sv-rJiX0QZjfQ</recordid><startdate>20140121</startdate><enddate>20140121</enddate><creator>Janssen, Maurice H. M</creator><creator>Powis, Ivan</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140121</creationdate><title>Detecting chirality in molecules by imaging photoelectron circular dichroism</title><author>Janssen, Maurice H. M ; Powis, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-2e90ad1ceb3528c7bcae72f4902ae2c621102bb61715d842eaa8db33d6185d823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chirality</topic><topic>Circularity</topic><topic>Dichroism</topic><topic>Femtosecond</topic><topic>Imaging</topic><topic>Ionization</topic><topic>Mathematical analysis</topic><topic>Photoelectrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janssen, Maurice H. M</creatorcontrib><creatorcontrib>Powis, Ivan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janssen, Maurice H. M</au><au>Powis, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting chirality in molecules by imaging photoelectron circular dichroism</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2014-01-21</date><risdate>2014</risdate><volume>16</volume><issue>3</issue><spage>856</spage><epage>871</epage><pages>856-871</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>In this Perspective we discuss photoelectron circular dichroism (PECD), a relatively novel technique that can detect chiral molecules with high sensitivity. PECD has an enantiomeric sensitivity of typically 1-10%, which is two to three orders of magnitude larger than that of the widely employed technique of circular dichroism (CD). In PECD a chiral molecule is photoionized with circular polarized light, and the photoelectron angular scattering distribution is detected using particle imaging techniques. We present the general physical principles of photoelectron circular dichroism and we address both single- and multiphoton excitation. PECD has been measured with synchrotron radiation in single-photon ionization as well as, very recently, with femtosecond laser radiation in multiphoton ionization. We discuss the experimental implementation of PECD, focusing on velocity map coincidence imaging where the momentum distribution of both the electron and the coincident ion is measured. The coincident detection of the mass and momentum of the ion adds very powerful mass-correlated information to the PECD measurement of the chiral molecule. We illustrate the capabilities and the potential of PECD with various experimental examples and introduce computational methods that are able to model quantitatively experimental PECD results. We conclude with an outlook on novel developments and (analytical) implementations of PECD that may further broaden the application of PECD for the sensitive detection of chirality in molecules.
A perspective is given on photoelectron circular dichroism, capable of distinguishing enantiomers of chiral molecules with high sensitivity and mass selectivity.</abstract><cop>England</cop><pmid>24305955</pmid><doi>10.1039/c3cp53741b</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2014-01, Vol.16 (3), p.856-871 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_rsc_primary_c3cp53741b |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Chirality Circularity Dichroism Femtosecond Imaging Ionization Mathematical analysis Photoelectrons |
title | Detecting chirality in molecules by imaging photoelectron circular dichroism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20chirality%20in%20molecules%20by%20imaging%20photoelectron%20circular%20dichroism&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Janssen,%20Maurice%20H.%20M&rft.date=2014-01-21&rft.volume=16&rft.issue=3&rft.spage=856&rft.epage=871&rft.pages=856-871&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c3cp53741b&rft_dat=%3Cproquest_rsc_p%3E1671556278%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1477558593&rft_id=info:pmid/24305955&rfr_iscdi=true |