Detecting chirality in molecules by imaging photoelectron circular dichroism

In this Perspective we discuss photoelectron circular dichroism (PECD), a relatively novel technique that can detect chiral molecules with high sensitivity. PECD has an enantiomeric sensitivity of typically 1-10%, which is two to three orders of magnitude larger than that of the widely employed tech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2014-01, Vol.16 (3), p.856-871
Hauptverfasser: Janssen, Maurice H. M, Powis, Ivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 871
container_issue 3
container_start_page 856
container_title Physical chemistry chemical physics : PCCP
container_volume 16
creator Janssen, Maurice H. M
Powis, Ivan
description In this Perspective we discuss photoelectron circular dichroism (PECD), a relatively novel technique that can detect chiral molecules with high sensitivity. PECD has an enantiomeric sensitivity of typically 1-10%, which is two to three orders of magnitude larger than that of the widely employed technique of circular dichroism (CD). In PECD a chiral molecule is photoionized with circular polarized light, and the photoelectron angular scattering distribution is detected using particle imaging techniques. We present the general physical principles of photoelectron circular dichroism and we address both single- and multiphoton excitation. PECD has been measured with synchrotron radiation in single-photon ionization as well as, very recently, with femtosecond laser radiation in multiphoton ionization. We discuss the experimental implementation of PECD, focusing on velocity map coincidence imaging where the momentum distribution of both the electron and the coincident ion is measured. The coincident detection of the mass and momentum of the ion adds very powerful mass-correlated information to the PECD measurement of the chiral molecule. We illustrate the capabilities and the potential of PECD with various experimental examples and introduce computational methods that are able to model quantitatively experimental PECD results. We conclude with an outlook on novel developments and (analytical) implementations of PECD that may further broaden the application of PECD for the sensitive detection of chirality in molecules. A perspective is given on photoelectron circular dichroism, capable of distinguishing enantiomers of chiral molecules with high sensitivity and mass selectivity.
doi_str_mv 10.1039/c3cp53741b
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c3cp53741b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671556278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-2e90ad1ceb3528c7bcae72f4902ae2c621102bb61715d842eaa8db33d6185d823</originalsourceid><addsrcrecordid>eNqFkbtPwzAQxi0EolBY2EFhQ0gBP-NkhPCUKsEAc2Q7l9YoL-xk6H-PS0vZYLrH97uT7juETgi-Iphl14aZXjDJid5BB4QnLM5wyne3uUwm6ND7D4wxEYTtownlDItMiAM0u4MBzGDbeWQW1qnaDsvItlHT1WDGGnykQ92o-YroF93QQRAG17WRsS4QykWlNQvXWd8cob1K1R6ON3GK3h_u3_KnePby-JzfzGLDpRhiChlWJTGgmaCpkdookLTiGaYKqEkoIZhqnRBJRJlyCkqlpWasTEgaGpRN0cV6b--6zxH8UDTWG6hr1UI3-oIkYVIkVKb_o1xKIVKRsYBerlHjOu8dVEXvwuVuWRBcrIwucpa_fht9G-Czzd5RN1Bu0R9nA3C6Bpw3W_X3U0E__0sv-rJiX0QZjfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1477558593</pqid></control><display><type>article</type><title>Detecting chirality in molecules by imaging photoelectron circular dichroism</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Janssen, Maurice H. M ; Powis, Ivan</creator><creatorcontrib>Janssen, Maurice H. M ; Powis, Ivan</creatorcontrib><description>In this Perspective we discuss photoelectron circular dichroism (PECD), a relatively novel technique that can detect chiral molecules with high sensitivity. PECD has an enantiomeric sensitivity of typically 1-10%, which is two to three orders of magnitude larger than that of the widely employed technique of circular dichroism (CD). In PECD a chiral molecule is photoionized with circular polarized light, and the photoelectron angular scattering distribution is detected using particle imaging techniques. We present the general physical principles of photoelectron circular dichroism and we address both single- and multiphoton excitation. PECD has been measured with synchrotron radiation in single-photon ionization as well as, very recently, with femtosecond laser radiation in multiphoton ionization. We discuss the experimental implementation of PECD, focusing on velocity map coincidence imaging where the momentum distribution of both the electron and the coincident ion is measured. The coincident detection of the mass and momentum of the ion adds very powerful mass-correlated information to the PECD measurement of the chiral molecule. We illustrate the capabilities and the potential of PECD with various experimental examples and introduce computational methods that are able to model quantitatively experimental PECD results. We conclude with an outlook on novel developments and (analytical) implementations of PECD that may further broaden the application of PECD for the sensitive detection of chirality in molecules. A perspective is given on photoelectron circular dichroism, capable of distinguishing enantiomers of chiral molecules with high sensitivity and mass selectivity.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c3cp53741b</identifier><identifier>PMID: 24305955</identifier><language>eng</language><publisher>England</publisher><subject>Chirality ; Circularity ; Dichroism ; Femtosecond ; Imaging ; Ionization ; Mathematical analysis ; Photoelectrons</subject><ispartof>Physical chemistry chemical physics : PCCP, 2014-01, Vol.16 (3), p.856-871</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-2e90ad1ceb3528c7bcae72f4902ae2c621102bb61715d842eaa8db33d6185d823</citedby><cites>FETCH-LOGICAL-c475t-2e90ad1ceb3528c7bcae72f4902ae2c621102bb61715d842eaa8db33d6185d823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24305955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Janssen, Maurice H. M</creatorcontrib><creatorcontrib>Powis, Ivan</creatorcontrib><title>Detecting chirality in molecules by imaging photoelectron circular dichroism</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>In this Perspective we discuss photoelectron circular dichroism (PECD), a relatively novel technique that can detect chiral molecules with high sensitivity. PECD has an enantiomeric sensitivity of typically 1-10%, which is two to three orders of magnitude larger than that of the widely employed technique of circular dichroism (CD). In PECD a chiral molecule is photoionized with circular polarized light, and the photoelectron angular scattering distribution is detected using particle imaging techniques. We present the general physical principles of photoelectron circular dichroism and we address both single- and multiphoton excitation. PECD has been measured with synchrotron radiation in single-photon ionization as well as, very recently, with femtosecond laser radiation in multiphoton ionization. We discuss the experimental implementation of PECD, focusing on velocity map coincidence imaging where the momentum distribution of both the electron and the coincident ion is measured. The coincident detection of the mass and momentum of the ion adds very powerful mass-correlated information to the PECD measurement of the chiral molecule. We illustrate the capabilities and the potential of PECD with various experimental examples and introduce computational methods that are able to model quantitatively experimental PECD results. We conclude with an outlook on novel developments and (analytical) implementations of PECD that may further broaden the application of PECD for the sensitive detection of chirality in molecules. A perspective is given on photoelectron circular dichroism, capable of distinguishing enantiomers of chiral molecules with high sensitivity and mass selectivity.</description><subject>Chirality</subject><subject>Circularity</subject><subject>Dichroism</subject><subject>Femtosecond</subject><subject>Imaging</subject><subject>Ionization</subject><subject>Mathematical analysis</subject><subject>Photoelectrons</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkbtPwzAQxi0EolBY2EFhQ0gBP-NkhPCUKsEAc2Q7l9YoL-xk6H-PS0vZYLrH97uT7juETgi-Iphl14aZXjDJid5BB4QnLM5wyne3uUwm6ND7D4wxEYTtownlDItMiAM0u4MBzGDbeWQW1qnaDsvItlHT1WDGGnykQ92o-YroF93QQRAG17WRsS4QykWlNQvXWd8cob1K1R6ON3GK3h_u3_KnePby-JzfzGLDpRhiChlWJTGgmaCpkdookLTiGaYKqEkoIZhqnRBJRJlyCkqlpWasTEgaGpRN0cV6b--6zxH8UDTWG6hr1UI3-oIkYVIkVKb_o1xKIVKRsYBerlHjOu8dVEXvwuVuWRBcrIwucpa_fht9G-Czzd5RN1Bu0R9nA3C6Bpw3W_X3U0E__0sv-rJiX0QZjfQ</recordid><startdate>20140121</startdate><enddate>20140121</enddate><creator>Janssen, Maurice H. M</creator><creator>Powis, Ivan</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140121</creationdate><title>Detecting chirality in molecules by imaging photoelectron circular dichroism</title><author>Janssen, Maurice H. M ; Powis, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-2e90ad1ceb3528c7bcae72f4902ae2c621102bb61715d842eaa8db33d6185d823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chirality</topic><topic>Circularity</topic><topic>Dichroism</topic><topic>Femtosecond</topic><topic>Imaging</topic><topic>Ionization</topic><topic>Mathematical analysis</topic><topic>Photoelectrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janssen, Maurice H. M</creatorcontrib><creatorcontrib>Powis, Ivan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janssen, Maurice H. M</au><au>Powis, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting chirality in molecules by imaging photoelectron circular dichroism</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2014-01-21</date><risdate>2014</risdate><volume>16</volume><issue>3</issue><spage>856</spage><epage>871</epage><pages>856-871</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>In this Perspective we discuss photoelectron circular dichroism (PECD), a relatively novel technique that can detect chiral molecules with high sensitivity. PECD has an enantiomeric sensitivity of typically 1-10%, which is two to three orders of magnitude larger than that of the widely employed technique of circular dichroism (CD). In PECD a chiral molecule is photoionized with circular polarized light, and the photoelectron angular scattering distribution is detected using particle imaging techniques. We present the general physical principles of photoelectron circular dichroism and we address both single- and multiphoton excitation. PECD has been measured with synchrotron radiation in single-photon ionization as well as, very recently, with femtosecond laser radiation in multiphoton ionization. We discuss the experimental implementation of PECD, focusing on velocity map coincidence imaging where the momentum distribution of both the electron and the coincident ion is measured. The coincident detection of the mass and momentum of the ion adds very powerful mass-correlated information to the PECD measurement of the chiral molecule. We illustrate the capabilities and the potential of PECD with various experimental examples and introduce computational methods that are able to model quantitatively experimental PECD results. We conclude with an outlook on novel developments and (analytical) implementations of PECD that may further broaden the application of PECD for the sensitive detection of chirality in molecules. A perspective is given on photoelectron circular dichroism, capable of distinguishing enantiomers of chiral molecules with high sensitivity and mass selectivity.</abstract><cop>England</cop><pmid>24305955</pmid><doi>10.1039/c3cp53741b</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2014-01, Vol.16 (3), p.856-871
issn 1463-9076
1463-9084
language eng
recordid cdi_rsc_primary_c3cp53741b
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Chirality
Circularity
Dichroism
Femtosecond
Imaging
Ionization
Mathematical analysis
Photoelectrons
title Detecting chirality in molecules by imaging photoelectron circular dichroism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20chirality%20in%20molecules%20by%20imaging%20photoelectron%20circular%20dichroism&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Janssen,%20Maurice%20H.%20M&rft.date=2014-01-21&rft.volume=16&rft.issue=3&rft.spage=856&rft.epage=871&rft.pages=856-871&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c3cp53741b&rft_dat=%3Cproquest_rsc_p%3E1671556278%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1477558593&rft_id=info:pmid/24305955&rfr_iscdi=true