FluidFM as a lithography tool in liquid: spatially controlled deposition of fluorescent nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33214k

The atomic force microscope (AFM) is a powerful instrument for nanolithography, which is well characterized in air where the deposition process is steered by capillary action. In contrast, AFM patterning has been seldom achieved in liquid, mostly via electrochemical deposition. This study investigat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Grüter, Raphael R, Vörös, János, Zambelli, Tomaso
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114
container_issue 3
container_start_page 197
container_title
container_volume 5
creator Grüter, Raphael R
Vörös, János
Zambelli, Tomaso
description The atomic force microscope (AFM) is a powerful instrument for nanolithography, which is well characterized in air where the deposition process is steered by capillary action. In contrast, AFM patterning has been seldom achieved in liquid, mostly via electrochemical deposition. This study investigates the pressure-controlled local deposition of nanoparticles in a liquid environment using a FluidFM. Fluorescent 25 nm polystyrene nanospheres were chosen as nanoobjects to be dispensed because they enable both the in situ monitoring of the process by optical microscopy and the ex situ high-resolution characterization of the pattern by e.g. scanning electron microscopy. The FluidFM microchannel was filled with an aqueous solution of negatively charged nanoparticles to be delivered onto a glass surface coated with a polycation. An overpressure in the internal fluidic circuit leads to the deposition of nanoparticle dots and lines under the tip, while the force control regulates the contact between the probe and the surface. The nanoparticle adsorption process depends both on applied pressure and contact time (respectively tip velocity) and can be described using the Langmuir approximation for the random sequential adsorption model. Moreover, we observed that the force setpoint, which does not influence the capillary-driven mechanism in air, indeed affects the hydrodynamic resistance at the tip aperture and therefore the volumetric flow. The described method demonstrates the potential of FluidFM in depositing nano-sized objects in liquid with nanometre precision. The mechanism of AFM-based pattern formation via dispensing in liquid was elucidated by investigating the effect of applied pressure, tip velocity and force setpoint.
doi_str_mv 10.1039/c2nr33214k
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c2nr33214k</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c2nr33214k</sourcerecordid><originalsourceid>FETCH-rsc_primary_c2nr33214k3</originalsourceid><addsrcrecordid>eNqFj7FOwzAQhi0EEqWwsCMdGwwtThwFtSskokPFUPbocBxquNjGdpDyYjxfLYRgQCrTnf77_k86xs4zPs-4WNzI3Hgh8qx4O2CTnBd8JsRtfvizl8UxOwnhlfNyIUoxYZ81Dbqt14ABEEjHrX3x6LYjRGsJtEnZeyKWEBxGjUQjSGuit0SqhVY5G3TU1oDtoKPBehWkMhEMGuvQRy1JhYqUTBWjJYTBOVJ9QtCPyd9Z3-OX4KrarK4BP1ATPpOaw0YpuH9cLeHvd6fsqEMK6ux7TtlFXT3dPcx8kI3zuk_y5hcXU3a57964thP_OXahUnA_</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>FluidFM as a lithography tool in liquid: spatially controlled deposition of fluorescent nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33214k</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Grüter, Raphael R ; Vörös, János ; Zambelli, Tomaso</creator><creatorcontrib>Grüter, Raphael R ; Vörös, János ; Zambelli, Tomaso</creatorcontrib><description>The atomic force microscope (AFM) is a powerful instrument for nanolithography, which is well characterized in air where the deposition process is steered by capillary action. In contrast, AFM patterning has been seldom achieved in liquid, mostly via electrochemical deposition. This study investigates the pressure-controlled local deposition of nanoparticles in a liquid environment using a FluidFM. Fluorescent 25 nm polystyrene nanospheres were chosen as nanoobjects to be dispensed because they enable both the in situ monitoring of the process by optical microscopy and the ex situ high-resolution characterization of the pattern by e.g. scanning electron microscopy. The FluidFM microchannel was filled with an aqueous solution of negatively charged nanoparticles to be delivered onto a glass surface coated with a polycation. An overpressure in the internal fluidic circuit leads to the deposition of nanoparticle dots and lines under the tip, while the force control regulates the contact between the probe and the surface. The nanoparticle adsorption process depends both on applied pressure and contact time (respectively tip velocity) and can be described using the Langmuir approximation for the random sequential adsorption model. Moreover, we observed that the force setpoint, which does not influence the capillary-driven mechanism in air, indeed affects the hydrodynamic resistance at the tip aperture and therefore the volumetric flow. The described method demonstrates the potential of FluidFM in depositing nano-sized objects in liquid with nanometre precision. The mechanism of AFM-based pattern formation via dispensing in liquid was elucidated by investigating the effect of applied pressure, tip velocity and force setpoint.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c2nr33214k</identifier><language>eng</language><creationdate>2013-01</creationdate><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Grüter, Raphael R</creatorcontrib><creatorcontrib>Vörös, János</creatorcontrib><creatorcontrib>Zambelli, Tomaso</creatorcontrib><title>FluidFM as a lithography tool in liquid: spatially controlled deposition of fluorescent nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33214k</title><description>The atomic force microscope (AFM) is a powerful instrument for nanolithography, which is well characterized in air where the deposition process is steered by capillary action. In contrast, AFM patterning has been seldom achieved in liquid, mostly via electrochemical deposition. This study investigates the pressure-controlled local deposition of nanoparticles in a liquid environment using a FluidFM. Fluorescent 25 nm polystyrene nanospheres were chosen as nanoobjects to be dispensed because they enable both the in situ monitoring of the process by optical microscopy and the ex situ high-resolution characterization of the pattern by e.g. scanning electron microscopy. The FluidFM microchannel was filled with an aqueous solution of negatively charged nanoparticles to be delivered onto a glass surface coated with a polycation. An overpressure in the internal fluidic circuit leads to the deposition of nanoparticle dots and lines under the tip, while the force control regulates the contact between the probe and the surface. The nanoparticle adsorption process depends both on applied pressure and contact time (respectively tip velocity) and can be described using the Langmuir approximation for the random sequential adsorption model. Moreover, we observed that the force setpoint, which does not influence the capillary-driven mechanism in air, indeed affects the hydrodynamic resistance at the tip aperture and therefore the volumetric flow. The described method demonstrates the potential of FluidFM in depositing nano-sized objects in liquid with nanometre precision. The mechanism of AFM-based pattern formation via dispensing in liquid was elucidated by investigating the effect of applied pressure, tip velocity and force setpoint.</description><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFj7FOwzAQhi0EEqWwsCMdGwwtThwFtSskokPFUPbocBxquNjGdpDyYjxfLYRgQCrTnf77_k86xs4zPs-4WNzI3Hgh8qx4O2CTnBd8JsRtfvizl8UxOwnhlfNyIUoxYZ81Dbqt14ABEEjHrX3x6LYjRGsJtEnZeyKWEBxGjUQjSGuit0SqhVY5G3TU1oDtoKPBehWkMhEMGuvQRy1JhYqUTBWjJYTBOVJ9QtCPyd9Z3-OX4KrarK4BP1ATPpOaw0YpuH9cLeHvd6fsqEMK6ux7TtlFXT3dPcx8kI3zuk_y5hcXU3a57964thP_OXahUnA_</recordid><startdate>20130117</startdate><enddate>20130117</enddate><creator>Grüter, Raphael R</creator><creator>Vörös, János</creator><creator>Zambelli, Tomaso</creator><scope/></search><sort><creationdate>20130117</creationdate><title>FluidFM as a lithography tool in liquid: spatially controlled deposition of fluorescent nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33214k</title><author>Grüter, Raphael R ; Vörös, János ; Zambelli, Tomaso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c2nr33214k3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grüter, Raphael R</creatorcontrib><creatorcontrib>Vörös, János</creatorcontrib><creatorcontrib>Zambelli, Tomaso</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grüter, Raphael R</au><au>Vörös, János</au><au>Zambelli, Tomaso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FluidFM as a lithography tool in liquid: spatially controlled deposition of fluorescent nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33214k</atitle><date>2013-01-17</date><risdate>2013</risdate><volume>5</volume><issue>3</issue><spage>197</spage><epage>114</epage><pages>197-114</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The atomic force microscope (AFM) is a powerful instrument for nanolithography, which is well characterized in air where the deposition process is steered by capillary action. In contrast, AFM patterning has been seldom achieved in liquid, mostly via electrochemical deposition. This study investigates the pressure-controlled local deposition of nanoparticles in a liquid environment using a FluidFM. Fluorescent 25 nm polystyrene nanospheres were chosen as nanoobjects to be dispensed because they enable both the in situ monitoring of the process by optical microscopy and the ex situ high-resolution characterization of the pattern by e.g. scanning electron microscopy. The FluidFM microchannel was filled with an aqueous solution of negatively charged nanoparticles to be delivered onto a glass surface coated with a polycation. An overpressure in the internal fluidic circuit leads to the deposition of nanoparticle dots and lines under the tip, while the force control regulates the contact between the probe and the surface. The nanoparticle adsorption process depends both on applied pressure and contact time (respectively tip velocity) and can be described using the Langmuir approximation for the random sequential adsorption model. Moreover, we observed that the force setpoint, which does not influence the capillary-driven mechanism in air, indeed affects the hydrodynamic resistance at the tip aperture and therefore the volumetric flow. The described method demonstrates the potential of FluidFM in depositing nano-sized objects in liquid with nanometre precision. The mechanism of AFM-based pattern formation via dispensing in liquid was elucidated by investigating the effect of applied pressure, tip velocity and force setpoint.</abstract><doi>10.1039/c2nr33214k</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof
issn 2040-3364
2040-3372
language eng
recordid cdi_rsc_primary_c2nr33214k
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title FluidFM as a lithography tool in liquid: spatially controlled deposition of fluorescent nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33214k
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FluidFM%20as%20a%20lithography%20tool%20in%20liquid:%20spatially%20controlled%20deposition%20of%20fluorescent%20nanoparticlesElectronic%20supplementary%20information%20(ESI)%20available.%20See%20DOI:%2010.1039/c2nr33214k&rft.au=Gr%C3%BCter,%20Raphael%20R&rft.date=2013-01-17&rft.volume=5&rft.issue=3&rft.spage=197&rft.epage=114&rft.pages=197-114&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c2nr33214k&rft_dat=%3Crsc%3Ec2nr33214k%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true