Bulk AlN single crystal growth on foreign substrate and preparation of free-standing native seeds

Physical vapour transport growth of aluminium nitride (AlN) single crystals on silicon carbide (SiC) substrates has been optimised and crack-free, large-area, free-standing (0001) AlN wafers were prepared from the grown template crystals. 28 mm diameter single crystals without any polycrystalline su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CrystEngComm 2013-01, Vol.15 (12), p.2232-224
1. Verfasser: Sumathi, R. Radhakrishnan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 224
container_issue 12
container_start_page 2232
container_title CrystEngComm
container_volume 15
creator Sumathi, R. Radhakrishnan
description Physical vapour transport growth of aluminium nitride (AlN) single crystals on silicon carbide (SiC) substrates has been optimised and crack-free, large-area, free-standing (0001) AlN wafers were prepared from the grown template crystals. 28 mm diameter single crystals without any polycrystalline surroundings were obtained. Different off-oriented substrates give rise to different growth modes. Sharp and symmetric line shapes of X-ray diffraction (XRD) rocking curves and high intense Raman phonon mode peaks prove high structural quality and homogeneity of the grown crystals. Full width at half maximum of the rocking curves is 72 arcsec for symmetric 00.2 reflection and 200 arcsec for asymmetric 10.3 reflection, representing a low screw as well as edge type threading dislocations. Wet chemical etching results also confirm the above XRD results and the estimated etch pit density is as low as 2-5 × 10 5 cm −2 . The growth surfaces of all the crystals show only Al-polarity as inferred by the etching analysis. The concentration of silicon and carbon impurities incorporated from the SiC substrate decreases with the growth length of the AlN crystals. These impurities might play a decisive role in determining the optical properties of the crystal and be responsible for the absence of near-bandgap excitonic luminescence. Confocal Raman spectra show only the phonon modes allowed by the selection rules for the measured symmetry. The observed E 2 (high) phonon mode frequency very closely matches the reported stress-free phonon frequency of AlN. This work demonstrates that AlN templates prepared on SiC as a foreign substrate can be used as native seeds for the growth of further homo-epitaxial layers and crystalline boules. Hetero-epitaxial growth of bulk AlN single crystals on SiC is demonstrated as a promising technology for large-area, high-quality AlN wafers.
doi_str_mv 10.1039/c2ce26599k
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c2ce26599k</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671421647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-dbf7a8f9322755ef2f4cea13073678180e0116957ad4e78170e33cccea7136723</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxS0EEqWwsCOZDSEFfLYTJ2OJyoeoYIE5cp1zCU2TYCdU_e8xFAET092997s3PEKOgV0AE9ml4QZ5EmfZcoeMQCZJlDIhdv_s--TA-1fGQAKwEdFXQ72kk_qB-qpZ1EiN2_he13Th2nX_QtuG2tZhtWioH-a-d7pHqpuSdg47Ha4qEK2l1iFG4bEpQwxtgv6O1COW_pDsWV17PPqeY_J8PX3Kb6PZ481dPplFRoLso3JulU5tJjhXcYyWW2lQg2BKJCqFlCEDSLJY6VJiEBRDIYwJjIJAcDEmZ9vczrVvA_q-WFXeYF3rBtvBF5AokBwSqQJ6vkWNa713aIvOVSvtNgWw4rPHIuf59KvH-wCfbGHnzQ_323PwT__zi6604gPOqXss</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671421647</pqid></control><display><type>article</type><title>Bulk AlN single crystal growth on foreign substrate and preparation of free-standing native seeds</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Sumathi, R. Radhakrishnan</creator><creatorcontrib>Sumathi, R. Radhakrishnan</creatorcontrib><description>Physical vapour transport growth of aluminium nitride (AlN) single crystals on silicon carbide (SiC) substrates has been optimised and crack-free, large-area, free-standing (0001) AlN wafers were prepared from the grown template crystals. 28 mm diameter single crystals without any polycrystalline surroundings were obtained. Different off-oriented substrates give rise to different growth modes. Sharp and symmetric line shapes of X-ray diffraction (XRD) rocking curves and high intense Raman phonon mode peaks prove high structural quality and homogeneity of the grown crystals. Full width at half maximum of the rocking curves is 72 arcsec for symmetric 00.2 reflection and 200 arcsec for asymmetric 10.3 reflection, representing a low screw as well as edge type threading dislocations. Wet chemical etching results also confirm the above XRD results and the estimated etch pit density is as low as 2-5 × 10 5 cm −2 . The growth surfaces of all the crystals show only Al-polarity as inferred by the etching analysis. The concentration of silicon and carbon impurities incorporated from the SiC substrate decreases with the growth length of the AlN crystals. These impurities might play a decisive role in determining the optical properties of the crystal and be responsible for the absence of near-bandgap excitonic luminescence. Confocal Raman spectra show only the phonon modes allowed by the selection rules for the measured symmetry. The observed E 2 (high) phonon mode frequency very closely matches the reported stress-free phonon frequency of AlN. This work demonstrates that AlN templates prepared on SiC as a foreign substrate can be used as native seeds for the growth of further homo-epitaxial layers and crystalline boules. Hetero-epitaxial growth of bulk AlN single crystals on SiC is demonstrated as a promising technology for large-area, high-quality AlN wafers.</description><identifier>ISSN: 1466-8033</identifier><identifier>EISSN: 1466-8033</identifier><identifier>DOI: 10.1039/c2ce26599k</identifier><language>eng</language><subject>Aluminum nitride ; Crystals ; Etching ; Phonons ; Reflection ; Silicon carbide ; Silicon substrates ; Single crystals</subject><ispartof>CrystEngComm, 2013-01, Vol.15 (12), p.2232-224</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-dbf7a8f9322755ef2f4cea13073678180e0116957ad4e78170e33cccea7136723</citedby><cites>FETCH-LOGICAL-c414t-dbf7a8f9322755ef2f4cea13073678180e0116957ad4e78170e33cccea7136723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Sumathi, R. Radhakrishnan</creatorcontrib><title>Bulk AlN single crystal growth on foreign substrate and preparation of free-standing native seeds</title><title>CrystEngComm</title><description>Physical vapour transport growth of aluminium nitride (AlN) single crystals on silicon carbide (SiC) substrates has been optimised and crack-free, large-area, free-standing (0001) AlN wafers were prepared from the grown template crystals. 28 mm diameter single crystals without any polycrystalline surroundings were obtained. Different off-oriented substrates give rise to different growth modes. Sharp and symmetric line shapes of X-ray diffraction (XRD) rocking curves and high intense Raman phonon mode peaks prove high structural quality and homogeneity of the grown crystals. Full width at half maximum of the rocking curves is 72 arcsec for symmetric 00.2 reflection and 200 arcsec for asymmetric 10.3 reflection, representing a low screw as well as edge type threading dislocations. Wet chemical etching results also confirm the above XRD results and the estimated etch pit density is as low as 2-5 × 10 5 cm −2 . The growth surfaces of all the crystals show only Al-polarity as inferred by the etching analysis. The concentration of silicon and carbon impurities incorporated from the SiC substrate decreases with the growth length of the AlN crystals. These impurities might play a decisive role in determining the optical properties of the crystal and be responsible for the absence of near-bandgap excitonic luminescence. Confocal Raman spectra show only the phonon modes allowed by the selection rules for the measured symmetry. The observed E 2 (high) phonon mode frequency very closely matches the reported stress-free phonon frequency of AlN. This work demonstrates that AlN templates prepared on SiC as a foreign substrate can be used as native seeds for the growth of further homo-epitaxial layers and crystalline boules. Hetero-epitaxial growth of bulk AlN single crystals on SiC is demonstrated as a promising technology for large-area, high-quality AlN wafers.</description><subject>Aluminum nitride</subject><subject>Crystals</subject><subject>Etching</subject><subject>Phonons</subject><subject>Reflection</subject><subject>Silicon carbide</subject><subject>Silicon substrates</subject><subject>Single crystals</subject><issn>1466-8033</issn><issn>1466-8033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kL1PwzAQxS0EEqWwsCOZDSEFfLYTJ2OJyoeoYIE5cp1zCU2TYCdU_e8xFAET092997s3PEKOgV0AE9ml4QZ5EmfZcoeMQCZJlDIhdv_s--TA-1fGQAKwEdFXQ72kk_qB-qpZ1EiN2_he13Th2nX_QtuG2tZhtWioH-a-d7pHqpuSdg47Ha4qEK2l1iFG4bEpQwxtgv6O1COW_pDsWV17PPqeY_J8PX3Kb6PZ481dPplFRoLso3JulU5tJjhXcYyWW2lQg2BKJCqFlCEDSLJY6VJiEBRDIYwJjIJAcDEmZ9vczrVvA_q-WFXeYF3rBtvBF5AokBwSqQJ6vkWNa713aIvOVSvtNgWw4rPHIuf59KvH-wCfbGHnzQ_323PwT__zi6604gPOqXss</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Sumathi, R. Radhakrishnan</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130101</creationdate><title>Bulk AlN single crystal growth on foreign substrate and preparation of free-standing native seeds</title><author>Sumathi, R. Radhakrishnan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-dbf7a8f9322755ef2f4cea13073678180e0116957ad4e78170e33cccea7136723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aluminum nitride</topic><topic>Crystals</topic><topic>Etching</topic><topic>Phonons</topic><topic>Reflection</topic><topic>Silicon carbide</topic><topic>Silicon substrates</topic><topic>Single crystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sumathi, R. Radhakrishnan</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>CrystEngComm</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sumathi, R. Radhakrishnan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bulk AlN single crystal growth on foreign substrate and preparation of free-standing native seeds</atitle><jtitle>CrystEngComm</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>15</volume><issue>12</issue><spage>2232</spage><epage>224</epage><pages>2232-224</pages><issn>1466-8033</issn><eissn>1466-8033</eissn><abstract>Physical vapour transport growth of aluminium nitride (AlN) single crystals on silicon carbide (SiC) substrates has been optimised and crack-free, large-area, free-standing (0001) AlN wafers were prepared from the grown template crystals. 28 mm diameter single crystals without any polycrystalline surroundings were obtained. Different off-oriented substrates give rise to different growth modes. Sharp and symmetric line shapes of X-ray diffraction (XRD) rocking curves and high intense Raman phonon mode peaks prove high structural quality and homogeneity of the grown crystals. Full width at half maximum of the rocking curves is 72 arcsec for symmetric 00.2 reflection and 200 arcsec for asymmetric 10.3 reflection, representing a low screw as well as edge type threading dislocations. Wet chemical etching results also confirm the above XRD results and the estimated etch pit density is as low as 2-5 × 10 5 cm −2 . The growth surfaces of all the crystals show only Al-polarity as inferred by the etching analysis. The concentration of silicon and carbon impurities incorporated from the SiC substrate decreases with the growth length of the AlN crystals. These impurities might play a decisive role in determining the optical properties of the crystal and be responsible for the absence of near-bandgap excitonic luminescence. Confocal Raman spectra show only the phonon modes allowed by the selection rules for the measured symmetry. The observed E 2 (high) phonon mode frequency very closely matches the reported stress-free phonon frequency of AlN. This work demonstrates that AlN templates prepared on SiC as a foreign substrate can be used as native seeds for the growth of further homo-epitaxial layers and crystalline boules. Hetero-epitaxial growth of bulk AlN single crystals on SiC is demonstrated as a promising technology for large-area, high-quality AlN wafers.</abstract><doi>10.1039/c2ce26599k</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1466-8033
ispartof CrystEngComm, 2013-01, Vol.15 (12), p.2232-224
issn 1466-8033
1466-8033
language eng
recordid cdi_rsc_primary_c2ce26599k
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Aluminum nitride
Crystals
Etching
Phonons
Reflection
Silicon carbide
Silicon substrates
Single crystals
title Bulk AlN single crystal growth on foreign substrate and preparation of free-standing native seeds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A02%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bulk%20AlN%20single%20crystal%20growth%20on%20foreign%20substrate%20and%20preparation%20of%20free-standing%20native%20seeds&rft.jtitle=CrystEngComm&rft.au=Sumathi,%20R.%20Radhakrishnan&rft.date=2013-01-01&rft.volume=15&rft.issue=12&rft.spage=2232&rft.epage=224&rft.pages=2232-224&rft.issn=1466-8033&rft.eissn=1466-8033&rft_id=info:doi/10.1039/c2ce26599k&rft_dat=%3Cproquest_rsc_p%3E1671421647%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671421647&rft_id=info:pmid/&rfr_iscdi=true