Composite photoanodes for photoelectrochemical solar water splitting
Photoelectrochemical (PEC) water splitting is an attractive approach to capturing and storing the earth's abundant solar energy influx. The challenging four-electron water-oxidation half-cell reaction has hindered this technology, giving rise to slow water oxidation kinetics at the photoanode s...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2010, Vol.3 (9), p.1252-1261 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1261 |
---|---|
container_issue | 9 |
container_start_page | 1252 |
container_title | Energy & environmental science |
container_volume | 3 |
creator | Sun, Jianwei Zhong, Diane K Gamelin, Daniel R |
description | Photoelectrochemical (PEC) water splitting is an attractive approach to capturing and storing the earth's abundant solar energy influx. The challenging four-electron water-oxidation half-cell reaction has hindered this technology, giving rise to slow water oxidation kinetics at the photoanode surfaces relative to competitive loss processes. In this perspective, we review recent efforts to improve PEC efficiencies by modification of semiconductor photoanode surfaces with water-oxidation catalysts that can operate at low overpotentials. This approach allows separation of the tasks of photon absorption, charge separation, and surface catalysis, allowing each to be optimized independently. In particular, composite photoanodes marrying nanocrystalline and molecular/non-crystalline components provide flexibility in adjusting the properties of each component, but raise new challenges in interfacial chemistries.
Composite photoelectrodes in photoelectrochemical cells for solar water splitting separate the tasks of photon absorption, charge separation, and redox catalysis, allowing each to be optimized independently. |
doi_str_mv | 10.1039/c0ee00030b |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c0ee00030b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>918058644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-9f8cb64373ab1f2e0c9ff0c62474484f95bf3ec5eb6b77a493ac388312b174623</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqxbuwngRhdbLJJpujtH5BwYueQ5JO7MpusyYp4r-3smpvnmaG92EOLyGnFK4oMHXtABEAGNg9MqGy5mUtQez_7kJVh-QopTcAUYFUEzKfhX4Iqc1YDKuQg1mHJabChzje2KHLMbgV9q0zXZFCZ2LxYTLGIg1dm3O7fj0mB950CU9-5pS83N0-zx7KxdP94-xmUTomZS6Vb5wVnElmLPUVglPegxMVl5w33KvaeoauRiuslIYrZhxrGkYrSyUXFZuSi_HvEMP7BlPWfZscdp1ZY9gkrWgDdSM438rLUboYUoro9RDb3sRPTUF_N6V3TW3x-Yhjcn9ul-th6bfm7D_DvgBxvXHR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>918058644</pqid></control><display><type>article</type><title>Composite photoanodes for photoelectrochemical solar water splitting</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Sun, Jianwei ; Zhong, Diane K ; Gamelin, Daniel R</creator><creatorcontrib>Sun, Jianwei ; Zhong, Diane K ; Gamelin, Daniel R</creatorcontrib><description>Photoelectrochemical (PEC) water splitting is an attractive approach to capturing and storing the earth's abundant solar energy influx. The challenging four-electron water-oxidation half-cell reaction has hindered this technology, giving rise to slow water oxidation kinetics at the photoanode surfaces relative to competitive loss processes. In this perspective, we review recent efforts to improve PEC efficiencies by modification of semiconductor photoanode surfaces with water-oxidation catalysts that can operate at low overpotentials. This approach allows separation of the tasks of photon absorption, charge separation, and surface catalysis, allowing each to be optimized independently. In particular, composite photoanodes marrying nanocrystalline and molecular/non-crystalline components provide flexibility in adjusting the properties of each component, but raise new challenges in interfacial chemistries.
Composite photoelectrodes in photoelectrochemical cells for solar water splitting separate the tasks of photon absorption, charge separation, and redox catalysis, allowing each to be optimized independently.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c0ee00030b</identifier><language>eng</language><ispartof>Energy & environmental science, 2010, Vol.3 (9), p.1252-1261</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-9f8cb64373ab1f2e0c9ff0c62474484f95bf3ec5eb6b77a493ac388312b174623</citedby><cites>FETCH-LOGICAL-c377t-9f8cb64373ab1f2e0c9ff0c62474484f95bf3ec5eb6b77a493ac388312b174623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,4025,27927,27928,27929</link.rule.ids></links><search><creatorcontrib>Sun, Jianwei</creatorcontrib><creatorcontrib>Zhong, Diane K</creatorcontrib><creatorcontrib>Gamelin, Daniel R</creatorcontrib><title>Composite photoanodes for photoelectrochemical solar water splitting</title><title>Energy & environmental science</title><description>Photoelectrochemical (PEC) water splitting is an attractive approach to capturing and storing the earth's abundant solar energy influx. The challenging four-electron water-oxidation half-cell reaction has hindered this technology, giving rise to slow water oxidation kinetics at the photoanode surfaces relative to competitive loss processes. In this perspective, we review recent efforts to improve PEC efficiencies by modification of semiconductor photoanode surfaces with water-oxidation catalysts that can operate at low overpotentials. This approach allows separation of the tasks of photon absorption, charge separation, and surface catalysis, allowing each to be optimized independently. In particular, composite photoanodes marrying nanocrystalline and molecular/non-crystalline components provide flexibility in adjusting the properties of each component, but raise new challenges in interfacial chemistries.
Composite photoelectrodes in photoelectrochemical cells for solar water splitting separate the tasks of photon absorption, charge separation, and redox catalysis, allowing each to be optimized independently.</description><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqxbuwngRhdbLJJpujtH5BwYueQ5JO7MpusyYp4r-3smpvnmaG92EOLyGnFK4oMHXtABEAGNg9MqGy5mUtQez_7kJVh-QopTcAUYFUEzKfhX4Iqc1YDKuQg1mHJabChzje2KHLMbgV9q0zXZFCZ2LxYTLGIg1dm3O7fj0mB950CU9-5pS83N0-zx7KxdP94-xmUTomZS6Vb5wVnElmLPUVglPegxMVl5w33KvaeoauRiuslIYrZhxrGkYrSyUXFZuSi_HvEMP7BlPWfZscdp1ZY9gkrWgDdSM438rLUboYUoro9RDb3sRPTUF_N6V3TW3x-Yhjcn9ul-th6bfm7D_DvgBxvXHR</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Sun, Jianwei</creator><creator>Zhong, Diane K</creator><creator>Gamelin, Daniel R</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>2010</creationdate><title>Composite photoanodes for photoelectrochemical solar water splitting</title><author>Sun, Jianwei ; Zhong, Diane K ; Gamelin, Daniel R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-9f8cb64373ab1f2e0c9ff0c62474484f95bf3ec5eb6b77a493ac388312b174623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jianwei</creatorcontrib><creatorcontrib>Zhong, Diane K</creatorcontrib><creatorcontrib>Gamelin, Daniel R</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jianwei</au><au>Zhong, Diane K</au><au>Gamelin, Daniel R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composite photoanodes for photoelectrochemical solar water splitting</atitle><jtitle>Energy & environmental science</jtitle><date>2010</date><risdate>2010</risdate><volume>3</volume><issue>9</issue><spage>1252</spage><epage>1261</epage><pages>1252-1261</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Photoelectrochemical (PEC) water splitting is an attractive approach to capturing and storing the earth's abundant solar energy influx. The challenging four-electron water-oxidation half-cell reaction has hindered this technology, giving rise to slow water oxidation kinetics at the photoanode surfaces relative to competitive loss processes. In this perspective, we review recent efforts to improve PEC efficiencies by modification of semiconductor photoanode surfaces with water-oxidation catalysts that can operate at low overpotentials. This approach allows separation of the tasks of photon absorption, charge separation, and surface catalysis, allowing each to be optimized independently. In particular, composite photoanodes marrying nanocrystalline and molecular/non-crystalline components provide flexibility in adjusting the properties of each component, but raise new challenges in interfacial chemistries.
Composite photoelectrodes in photoelectrochemical cells for solar water splitting separate the tasks of photon absorption, charge separation, and redox catalysis, allowing each to be optimized independently.</abstract><doi>10.1039/c0ee00030b</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2010, Vol.3 (9), p.1252-1261 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_rsc_primary_c0ee00030b |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
title | Composite photoanodes for photoelectrochemical solar water splitting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T21%3A32%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composite%20photoanodes%20for%20photoelectrochemical%20solar%20water%20splitting&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Sun,%20Jianwei&rft.date=2010&rft.volume=3&rft.issue=9&rft.spage=1252&rft.epage=1261&rft.pages=1252-1261&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c0ee00030b&rft_dat=%3Cproquest_rsc_p%3E918058644%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=918058644&rft_id=info:pmid/&rfr_iscdi=true |