Composite photoanodes for photoelectrochemical solar water splitting

Photoelectrochemical (PEC) water splitting is an attractive approach to capturing and storing the earth's abundant solar energy influx. The challenging four-electron water-oxidation half-cell reaction has hindered this technology, giving rise to slow water oxidation kinetics at the photoanode s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2010, Vol.3 (9), p.1252-1261
Hauptverfasser: Sun, Jianwei, Zhong, Diane K, Gamelin, Daniel R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1261
container_issue 9
container_start_page 1252
container_title Energy & environmental science
container_volume 3
creator Sun, Jianwei
Zhong, Diane K
Gamelin, Daniel R
description Photoelectrochemical (PEC) water splitting is an attractive approach to capturing and storing the earth's abundant solar energy influx. The challenging four-electron water-oxidation half-cell reaction has hindered this technology, giving rise to slow water oxidation kinetics at the photoanode surfaces relative to competitive loss processes. In this perspective, we review recent efforts to improve PEC efficiencies by modification of semiconductor photoanode surfaces with water-oxidation catalysts that can operate at low overpotentials. This approach allows separation of the tasks of photon absorption, charge separation, and surface catalysis, allowing each to be optimized independently. In particular, composite photoanodes marrying nanocrystalline and molecular/non-crystalline components provide flexibility in adjusting the properties of each component, but raise new challenges in interfacial chemistries. Composite photoelectrodes in photoelectrochemical cells for solar water splitting separate the tasks of photon absorption, charge separation, and redox catalysis, allowing each to be optimized independently.
doi_str_mv 10.1039/c0ee00030b
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c0ee00030b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>918058644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-9f8cb64373ab1f2e0c9ff0c62474484f95bf3ec5eb6b77a493ac388312b174623</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqxbuwngRhdbLJJpujtH5BwYueQ5JO7MpusyYp4r-3smpvnmaG92EOLyGnFK4oMHXtABEAGNg9MqGy5mUtQez_7kJVh-QopTcAUYFUEzKfhX4Iqc1YDKuQg1mHJabChzje2KHLMbgV9q0zXZFCZ2LxYTLGIg1dm3O7fj0mB950CU9-5pS83N0-zx7KxdP94-xmUTomZS6Vb5wVnElmLPUVglPegxMVl5w33KvaeoauRiuslIYrZhxrGkYrSyUXFZuSi_HvEMP7BlPWfZscdp1ZY9gkrWgDdSM438rLUboYUoro9RDb3sRPTUF_N6V3TW3x-Yhjcn9ul-th6bfm7D_DvgBxvXHR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>918058644</pqid></control><display><type>article</type><title>Composite photoanodes for photoelectrochemical solar water splitting</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Sun, Jianwei ; Zhong, Diane K ; Gamelin, Daniel R</creator><creatorcontrib>Sun, Jianwei ; Zhong, Diane K ; Gamelin, Daniel R</creatorcontrib><description>Photoelectrochemical (PEC) water splitting is an attractive approach to capturing and storing the earth's abundant solar energy influx. The challenging four-electron water-oxidation half-cell reaction has hindered this technology, giving rise to slow water oxidation kinetics at the photoanode surfaces relative to competitive loss processes. In this perspective, we review recent efforts to improve PEC efficiencies by modification of semiconductor photoanode surfaces with water-oxidation catalysts that can operate at low overpotentials. This approach allows separation of the tasks of photon absorption, charge separation, and surface catalysis, allowing each to be optimized independently. In particular, composite photoanodes marrying nanocrystalline and molecular/non-crystalline components provide flexibility in adjusting the properties of each component, but raise new challenges in interfacial chemistries. Composite photoelectrodes in photoelectrochemical cells for solar water splitting separate the tasks of photon absorption, charge separation, and redox catalysis, allowing each to be optimized independently.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c0ee00030b</identifier><language>eng</language><ispartof>Energy &amp; environmental science, 2010, Vol.3 (9), p.1252-1261</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-9f8cb64373ab1f2e0c9ff0c62474484f95bf3ec5eb6b77a493ac388312b174623</citedby><cites>FETCH-LOGICAL-c377t-9f8cb64373ab1f2e0c9ff0c62474484f95bf3ec5eb6b77a493ac388312b174623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,4025,27927,27928,27929</link.rule.ids></links><search><creatorcontrib>Sun, Jianwei</creatorcontrib><creatorcontrib>Zhong, Diane K</creatorcontrib><creatorcontrib>Gamelin, Daniel R</creatorcontrib><title>Composite photoanodes for photoelectrochemical solar water splitting</title><title>Energy &amp; environmental science</title><description>Photoelectrochemical (PEC) water splitting is an attractive approach to capturing and storing the earth's abundant solar energy influx. The challenging four-electron water-oxidation half-cell reaction has hindered this technology, giving rise to slow water oxidation kinetics at the photoanode surfaces relative to competitive loss processes. In this perspective, we review recent efforts to improve PEC efficiencies by modification of semiconductor photoanode surfaces with water-oxidation catalysts that can operate at low overpotentials. This approach allows separation of the tasks of photon absorption, charge separation, and surface catalysis, allowing each to be optimized independently. In particular, composite photoanodes marrying nanocrystalline and molecular/non-crystalline components provide flexibility in adjusting the properties of each component, but raise new challenges in interfacial chemistries. Composite photoelectrodes in photoelectrochemical cells for solar water splitting separate the tasks of photon absorption, charge separation, and redox catalysis, allowing each to be optimized independently.</description><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqxbuwngRhdbLJJpujtH5BwYueQ5JO7MpusyYp4r-3smpvnmaG92EOLyGnFK4oMHXtABEAGNg9MqGy5mUtQez_7kJVh-QopTcAUYFUEzKfhX4Iqc1YDKuQg1mHJabChzje2KHLMbgV9q0zXZFCZ2LxYTLGIg1dm3O7fj0mB950CU9-5pS83N0-zx7KxdP94-xmUTomZS6Vb5wVnElmLPUVglPegxMVl5w33KvaeoauRiuslIYrZhxrGkYrSyUXFZuSi_HvEMP7BlPWfZscdp1ZY9gkrWgDdSM438rLUboYUoro9RDb3sRPTUF_N6V3TW3x-Yhjcn9ul-th6bfm7D_DvgBxvXHR</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Sun, Jianwei</creator><creator>Zhong, Diane K</creator><creator>Gamelin, Daniel R</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>2010</creationdate><title>Composite photoanodes for photoelectrochemical solar water splitting</title><author>Sun, Jianwei ; Zhong, Diane K ; Gamelin, Daniel R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-9f8cb64373ab1f2e0c9ff0c62474484f95bf3ec5eb6b77a493ac388312b174623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jianwei</creatorcontrib><creatorcontrib>Zhong, Diane K</creatorcontrib><creatorcontrib>Gamelin, Daniel R</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jianwei</au><au>Zhong, Diane K</au><au>Gamelin, Daniel R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composite photoanodes for photoelectrochemical solar water splitting</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2010</date><risdate>2010</risdate><volume>3</volume><issue>9</issue><spage>1252</spage><epage>1261</epage><pages>1252-1261</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Photoelectrochemical (PEC) water splitting is an attractive approach to capturing and storing the earth's abundant solar energy influx. The challenging four-electron water-oxidation half-cell reaction has hindered this technology, giving rise to slow water oxidation kinetics at the photoanode surfaces relative to competitive loss processes. In this perspective, we review recent efforts to improve PEC efficiencies by modification of semiconductor photoanode surfaces with water-oxidation catalysts that can operate at low overpotentials. This approach allows separation of the tasks of photon absorption, charge separation, and surface catalysis, allowing each to be optimized independently. In particular, composite photoanodes marrying nanocrystalline and molecular/non-crystalline components provide flexibility in adjusting the properties of each component, but raise new challenges in interfacial chemistries. Composite photoelectrodes in photoelectrochemical cells for solar water splitting separate the tasks of photon absorption, charge separation, and redox catalysis, allowing each to be optimized independently.</abstract><doi>10.1039/c0ee00030b</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2010, Vol.3 (9), p.1252-1261
issn 1754-5692
1754-5706
language eng
recordid cdi_rsc_primary_c0ee00030b
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Composite photoanodes for photoelectrochemical solar water splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T21%3A32%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composite%20photoanodes%20for%20photoelectrochemical%20solar%20water%20splitting&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Sun,%20Jianwei&rft.date=2010&rft.volume=3&rft.issue=9&rft.spage=1252&rft.epage=1261&rft.pages=1252-1261&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c0ee00030b&rft_dat=%3Cproquest_rsc_p%3E918058644%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=918058644&rft_id=info:pmid/&rfr_iscdi=true