From CO2 to dimethyl carbonate with dialkyldimethoxystannanes: the key role of monomeric speciesElectronic supplementary information (ESI) available: Geometrical parameters for 7, 8, and 11; energy profiles of the reaction of CO2 with 1-6, and 9; HOMOs and LUMOs of CO2 and 2 to 9; PW91 functional energy diagrams for the reaction of CO2 with 1; Gibbs energy diagrams for the reaction of CO2 with 1 at 298 and 423 K. See DOI: 10.1039/c0cp02089c

The formation of dimethyl carbonate (DMC) from CO 2 and methanol with the dimer [ n -Bu 2 Sn(OCH 3 ) 2 ] 2 was investigated by experimental kinetics in support of DFT calculations. Under the reaction conditions (357-423 K, 10-20 MPa), identical initial rates are observed with three different reactin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kalhor, Mahboubeh Poor, Chermette, Henry, Chambrey, Stéphane, Ballivet-Tkatchenko, Danielle
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 248
container_issue 6
container_start_page 241
container_title
container_volume 13
creator Kalhor, Mahboubeh Poor
Chermette, Henry
Chambrey, Stéphane
Ballivet-Tkatchenko, Danielle
description The formation of dimethyl carbonate (DMC) from CO 2 and methanol with the dimer [ n -Bu 2 Sn(OCH 3 ) 2 ] 2 was investigated by experimental kinetics in support of DFT calculations. Under the reaction conditions (357-423 K, 10-20 MPa), identical initial rates are observed with three different reacting mixtures, CO 2 /toluene, supercritical CO 2 , and CO 2 /methanol, and are consistent with the formation of monomeric di- n -butyltin( iv ) species. An intramolecular mechanism is, therefore, proposed with an Arrhenius activation energy amounting to 104 ± 10 kJ mol −1 for DMC synthesis. DFT calculations on the [(CH 3 ) 2 Sn(OCH 3 ) 2 ] 2 /CO 2 system show that the exothermic insertion of CO 2 into the Sn-OCH 3 bond occurs by a concerted Lewis acid-base interaction involving the tin center and the oxygen atom of the methoxy ligand. The Gibbs energy diagrams highlight that, under the reaction conditions, the dimer-monomer equilibrium is significantly shifted towards monomeric species, in agreement with the experimental kinetics. Importantly, the two Sn-OCH 3 bonds are prompt to insert CO 2 . These results provide new insight into the reaction mechanism and catalyst design to enhance the turnover numbers. Experimental kinetics and density functional theory calculations demonstrate the ability of dialkyltin( iv ) monomers to convert CO 2 , that opens up a novel route to catalyst optimization.
doi_str_mv 10.1039/c0cp02089c
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c0cp02089c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c0cp02089c</sourcerecordid><originalsourceid>FETCH-rsc_primary_c0cp02089c3</originalsourceid><addsrcrecordid>eNqVUU1PwzAMLQgkPi_ckcwNpG0k6xjrdoQNEKAhAeI4eZm7BdKkSsJH_xs_jrSb4IAAcYrfs_387ETRDmcNzuLkUDCRsybrJGI5WuetdlxPWKe18hkft9eiDeceGWP8iMfrS-8DazI4GTbBG5jIjPysUCDQjo1GT_Aq_SzwqJ4KNU-bt8J51Bo1uS74GcETFWCNIjApZEabjKwU4HISklxfkfDW6JJ5znNFGWmPtgCpU2Mz9NJo2O_fXhwAvqBUOFbUhTMKKj7IoIIcLQZA1kHogOMadGqAegKc94A02WkBuTWpVORKC6UlSygq5YDL5ao1eL09b0x6cD68HroKXN2X0aKuJKpThJKbh4RD-qwroeBjMSocYxoMzc38PKsHZ3I8dv_sAvTQTDqVj1YzhssG3BLB6fCiC9__eCtaTVE52l68m9HuoH93cl63ToxyK7Nw59FXefx3fu-3_CifpPEH1QnERQ</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>From CO2 to dimethyl carbonate with dialkyldimethoxystannanes: the key role of monomeric speciesElectronic supplementary information (ESI) available: Geometrical parameters for 7, 8, and 11; energy profiles of the reaction of CO2 with 1-6, and 9; HOMOs and LUMOs of CO2 and 2 to 9; PW91 functional energy diagrams for the reaction of CO2 with 1; Gibbs energy diagrams for the reaction of CO2 with 1 at 298 and 423 K. See DOI: 10.1039/c0cp02089c</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Kalhor, Mahboubeh Poor ; Chermette, Henry ; Chambrey, Stéphane ; Ballivet-Tkatchenko, Danielle</creator><creatorcontrib>Kalhor, Mahboubeh Poor ; Chermette, Henry ; Chambrey, Stéphane ; Ballivet-Tkatchenko, Danielle</creatorcontrib><description>The formation of dimethyl carbonate (DMC) from CO 2 and methanol with the dimer [ n -Bu 2 Sn(OCH 3 ) 2 ] 2 was investigated by experimental kinetics in support of DFT calculations. Under the reaction conditions (357-423 K, 10-20 MPa), identical initial rates are observed with three different reacting mixtures, CO 2 /toluene, supercritical CO 2 , and CO 2 /methanol, and are consistent with the formation of monomeric di- n -butyltin( iv ) species. An intramolecular mechanism is, therefore, proposed with an Arrhenius activation energy amounting to 104 ± 10 kJ mol −1 for DMC synthesis. DFT calculations on the [(CH 3 ) 2 Sn(OCH 3 ) 2 ] 2 /CO 2 system show that the exothermic insertion of CO 2 into the Sn-OCH 3 bond occurs by a concerted Lewis acid-base interaction involving the tin center and the oxygen atom of the methoxy ligand. The Gibbs energy diagrams highlight that, under the reaction conditions, the dimer-monomer equilibrium is significantly shifted towards monomeric species, in agreement with the experimental kinetics. Importantly, the two Sn-OCH 3 bonds are prompt to insert CO 2 . These results provide new insight into the reaction mechanism and catalyst design to enhance the turnover numbers. Experimental kinetics and density functional theory calculations demonstrate the ability of dialkyltin( iv ) monomers to convert CO 2 , that opens up a novel route to catalyst optimization.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c0cp02089c</identifier><language>eng</language><creationdate>2011-01</creationdate><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Kalhor, Mahboubeh Poor</creatorcontrib><creatorcontrib>Chermette, Henry</creatorcontrib><creatorcontrib>Chambrey, Stéphane</creatorcontrib><creatorcontrib>Ballivet-Tkatchenko, Danielle</creatorcontrib><title>From CO2 to dimethyl carbonate with dialkyldimethoxystannanes: the key role of monomeric speciesElectronic supplementary information (ESI) available: Geometrical parameters for 7, 8, and 11; energy profiles of the reaction of CO2 with 1-6, and 9; HOMOs and LUMOs of CO2 and 2 to 9; PW91 functional energy diagrams for the reaction of CO2 with 1; Gibbs energy diagrams for the reaction of CO2 with 1 at 298 and 423 K. See DOI: 10.1039/c0cp02089c</title><description>The formation of dimethyl carbonate (DMC) from CO 2 and methanol with the dimer [ n -Bu 2 Sn(OCH 3 ) 2 ] 2 was investigated by experimental kinetics in support of DFT calculations. Under the reaction conditions (357-423 K, 10-20 MPa), identical initial rates are observed with three different reacting mixtures, CO 2 /toluene, supercritical CO 2 , and CO 2 /methanol, and are consistent with the formation of monomeric di- n -butyltin( iv ) species. An intramolecular mechanism is, therefore, proposed with an Arrhenius activation energy amounting to 104 ± 10 kJ mol −1 for DMC synthesis. DFT calculations on the [(CH 3 ) 2 Sn(OCH 3 ) 2 ] 2 /CO 2 system show that the exothermic insertion of CO 2 into the Sn-OCH 3 bond occurs by a concerted Lewis acid-base interaction involving the tin center and the oxygen atom of the methoxy ligand. The Gibbs energy diagrams highlight that, under the reaction conditions, the dimer-monomer equilibrium is significantly shifted towards monomeric species, in agreement with the experimental kinetics. Importantly, the two Sn-OCH 3 bonds are prompt to insert CO 2 . These results provide new insight into the reaction mechanism and catalyst design to enhance the turnover numbers. Experimental kinetics and density functional theory calculations demonstrate the ability of dialkyltin( iv ) monomers to convert CO 2 , that opens up a novel route to catalyst optimization.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVUU1PwzAMLQgkPi_ckcwNpG0k6xjrdoQNEKAhAeI4eZm7BdKkSsJH_xs_jrSb4IAAcYrfs_387ETRDmcNzuLkUDCRsybrJGI5WuetdlxPWKe18hkft9eiDeceGWP8iMfrS-8DazI4GTbBG5jIjPysUCDQjo1GT_Aq_SzwqJ4KNU-bt8J51Bo1uS74GcETFWCNIjApZEabjKwU4HISklxfkfDW6JJ5znNFGWmPtgCpU2Mz9NJo2O_fXhwAvqBUOFbUhTMKKj7IoIIcLQZA1kHogOMadGqAegKc94A02WkBuTWpVORKC6UlSygq5YDL5ao1eL09b0x6cD68HroKXN2X0aKuJKpThJKbh4RD-qwroeBjMSocYxoMzc38PKsHZ3I8dv_sAvTQTDqVj1YzhssG3BLB6fCiC9__eCtaTVE52l68m9HuoH93cl63ToxyK7Nw59FXefx3fu-3_CifpPEH1QnERQ</recordid><startdate>20110127</startdate><enddate>20110127</enddate><creator>Kalhor, Mahboubeh Poor</creator><creator>Chermette, Henry</creator><creator>Chambrey, Stéphane</creator><creator>Ballivet-Tkatchenko, Danielle</creator><scope/></search><sort><creationdate>20110127</creationdate><title>From CO2 to dimethyl carbonate with dialkyldimethoxystannanes: the key role of monomeric speciesElectronic supplementary information (ESI) available: Geometrical parameters for 7, 8, and 11; energy profiles of the reaction of CO2 with 1-6, and 9; HOMOs and LUMOs of CO2 and 2 to 9; PW91 functional energy diagrams for the reaction of CO2 with 1; Gibbs energy diagrams for the reaction of CO2 with 1 at 298 and 423 K. See DOI: 10.1039/c0cp02089c</title><author>Kalhor, Mahboubeh Poor ; Chermette, Henry ; Chambrey, Stéphane ; Ballivet-Tkatchenko, Danielle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c0cp02089c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalhor, Mahboubeh Poor</creatorcontrib><creatorcontrib>Chermette, Henry</creatorcontrib><creatorcontrib>Chambrey, Stéphane</creatorcontrib><creatorcontrib>Ballivet-Tkatchenko, Danielle</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalhor, Mahboubeh Poor</au><au>Chermette, Henry</au><au>Chambrey, Stéphane</au><au>Ballivet-Tkatchenko, Danielle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From CO2 to dimethyl carbonate with dialkyldimethoxystannanes: the key role of monomeric speciesElectronic supplementary information (ESI) available: Geometrical parameters for 7, 8, and 11; energy profiles of the reaction of CO2 with 1-6, and 9; HOMOs and LUMOs of CO2 and 2 to 9; PW91 functional energy diagrams for the reaction of CO2 with 1; Gibbs energy diagrams for the reaction of CO2 with 1 at 298 and 423 K. See DOI: 10.1039/c0cp02089c</atitle><date>2011-01-27</date><risdate>2011</risdate><volume>13</volume><issue>6</issue><spage>241</spage><epage>248</epage><pages>241-248</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The formation of dimethyl carbonate (DMC) from CO 2 and methanol with the dimer [ n -Bu 2 Sn(OCH 3 ) 2 ] 2 was investigated by experimental kinetics in support of DFT calculations. Under the reaction conditions (357-423 K, 10-20 MPa), identical initial rates are observed with three different reacting mixtures, CO 2 /toluene, supercritical CO 2 , and CO 2 /methanol, and are consistent with the formation of monomeric di- n -butyltin( iv ) species. An intramolecular mechanism is, therefore, proposed with an Arrhenius activation energy amounting to 104 ± 10 kJ mol −1 for DMC synthesis. DFT calculations on the [(CH 3 ) 2 Sn(OCH 3 ) 2 ] 2 /CO 2 system show that the exothermic insertion of CO 2 into the Sn-OCH 3 bond occurs by a concerted Lewis acid-base interaction involving the tin center and the oxygen atom of the methoxy ligand. The Gibbs energy diagrams highlight that, under the reaction conditions, the dimer-monomer equilibrium is significantly shifted towards monomeric species, in agreement with the experimental kinetics. Importantly, the two Sn-OCH 3 bonds are prompt to insert CO 2 . These results provide new insight into the reaction mechanism and catalyst design to enhance the turnover numbers. Experimental kinetics and density functional theory calculations demonstrate the ability of dialkyltin( iv ) monomers to convert CO 2 , that opens up a novel route to catalyst optimization.</abstract><doi>10.1039/c0cp02089c</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof
issn 1463-9076
1463-9084
language eng
recordid cdi_rsc_primary_c0cp02089c
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title From CO2 to dimethyl carbonate with dialkyldimethoxystannanes: the key role of monomeric speciesElectronic supplementary information (ESI) available: Geometrical parameters for 7, 8, and 11; energy profiles of the reaction of CO2 with 1-6, and 9; HOMOs and LUMOs of CO2 and 2 to 9; PW91 functional energy diagrams for the reaction of CO2 with 1; Gibbs energy diagrams for the reaction of CO2 with 1 at 298 and 423 K. See DOI: 10.1039/c0cp02089c
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A20%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20CO2%20to%20dimethyl%20carbonate%20with%20dialkyldimethoxystannanes:%20the%20key%20role%20of%20monomeric%20speciesElectronic%20supplementary%20information%20(ESI)%20available:%20Geometrical%20parameters%20for%207,%208,%20and%2011;%20energy%20profiles%20of%20the%20reaction%20of%20CO2%20with%201-6,%20and%209;%20HOMOs%20and%20LUMOs%20of%20CO2%20and%202%20to%209;%20PW91%20functional%20energy%20diagrams%20for%20the%20reaction%20of%20CO2%20with%201;%20Gibbs%20energy%20diagrams%20for%20the%20reaction%20of%20CO2%20with%201%20at%20298%20and%20423%20K.%20See%20DOI:%2010.1039/c0cp02089c&rft.au=Kalhor,%20Mahboubeh%20Poor&rft.date=2011-01-27&rft.volume=13&rft.issue=6&rft.spage=241&rft.epage=248&rft.pages=241-248&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c0cp02089c&rft_dat=%3Crsc%3Ec0cp02089c%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true