Glial cell regulation of neuronal activity and blood flow in the retina by release of gliotransmitters

Astrocytes in the brain release transmitters that actively modulate neuronal excitability and synaptic efficacy. Astrocytes also release vasoactive agents that contribute to neurovascular coupling. As reviewed in this article, Müller cells, the principal retinal glial cells, modulate neuronal activi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2015-07, Vol.370 (1672), p.1-9
1. Verfasser: Newman, Eric A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 1672
container_start_page 1
container_title Philosophical transactions of the Royal Society of London. Series B. Biological sciences
container_volume 370
creator Newman, Eric A.
description Astrocytes in the brain release transmitters that actively modulate neuronal excitability and synaptic efficacy. Astrocytes also release vasoactive agents that contribute to neurovascular coupling. As reviewed in this article, Müller cells, the principal retinal glial cells, modulate neuronal activity and blood flow in the retina. Stimulated Müller cells release ATP which, following its conversion to adenosine by ectoenzymes, hyperpolarizes retinal ganglion cells by activation of A1 adenosine receptors. This results in the opening of G protein-coupled inwardly rectifying potassium (GIRK) channels and small conductance Ca2+-activated K+ (SK) channels. Tonic release of ATP also contributes to the generation of tone in the retinal vasculature by activation of P2X receptors on vascular smooth muscle cells. Vascular tone is lost when glial cells are poisoned with the gliotoxin fluorocitrate. The glial release of vasoactive metabolites of arachidonic acid, including prostaglandin E2 (PGE2) and epoxyeicosatrienoic acids (EETs), contributes to neurovascular coupling in the retina. Neurovascular coupling is reduced when neuronal stimulation of glial cells is interrupted and when the synthesis of arachidonic acid metabolites is blocked. Neurovascular coupling is compromised in diabetic retinopathy owing to the loss of glial-mediated vasodilation. This loss can be reversed by inhibiting inducible nitric oxide synthase. It is likely that future research will reveal additional important functions of the release of transmitters from glial cells.
doi_str_mv 10.1098/rstb.2014.0195
format Article
fullrecord <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rstb_2014_0195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24504962</jstor_id><sourcerecordid>24504962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-f62d6e3863a55a1c086b8adcf36321b46902ec66e147c9cab31c780f4cd63aa63</originalsourceid><addsrcrecordid>eNp1ks1v1DAQxS0EotuWKzeQj1yyteOPxBckVEGLVKkXerYcZ7L1ymsX22mV_x5HWwocOHmkee95PD8j9J6SLSWqv0i5DNuWUL4lVIlXaEN5R5tWdeQ12hAl26bnTJ6g05z3hBAlOv4WnbSyll3HN2i68s54bMF7nGA3e1NcDDhOOMCcYqg9Y4t7dGXBJox48DGOePLxCbuAyz1UV3HB4GGplQeTYTXvvIslmZAPrhRI-Ry9mYzP8O75PEN3377-uLxubm6vvl9-uWmsEKI0k2xHCayXzAhhqCW9HHoz2olJ1tKBS0VasFJCfaVV1gyM2q4nE7djtRjJztDnY-7DPBxgtBDqFF4_JHcwadHROP1vJ7h7vYuPmnMhOslrwKfngBR_zpCLPri8bscEiHPWtK8zKaHYKt0epTbFnBNML9dQolc4eoWjVzh6hVMNH_8e7kX-m0YVsKMgxaVuKVoHZdH7OKfKIf8_9sPRtc8lpj-pXBBePwD7BSrIqRk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808695934</pqid></control><display><type>article</type><title>Glial cell regulation of neuronal activity and blood flow in the retina by release of gliotransmitters</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><creator>Newman, Eric A.</creator><creatorcontrib>Newman, Eric A.</creatorcontrib><description>Astrocytes in the brain release transmitters that actively modulate neuronal excitability and synaptic efficacy. Astrocytes also release vasoactive agents that contribute to neurovascular coupling. As reviewed in this article, Müller cells, the principal retinal glial cells, modulate neuronal activity and blood flow in the retina. Stimulated Müller cells release ATP which, following its conversion to adenosine by ectoenzymes, hyperpolarizes retinal ganglion cells by activation of A1 adenosine receptors. This results in the opening of G protein-coupled inwardly rectifying potassium (GIRK) channels and small conductance Ca2+-activated K+ (SK) channels. Tonic release of ATP also contributes to the generation of tone in the retinal vasculature by activation of P2X receptors on vascular smooth muscle cells. Vascular tone is lost when glial cells are poisoned with the gliotoxin fluorocitrate. The glial release of vasoactive metabolites of arachidonic acid, including prostaglandin E2 (PGE2) and epoxyeicosatrienoic acids (EETs), contributes to neurovascular coupling in the retina. Neurovascular coupling is reduced when neuronal stimulation of glial cells is interrupted and when the synthesis of arachidonic acid metabolites is blocked. Neurovascular coupling is compromised in diabetic retinopathy owing to the loss of glial-mediated vasodilation. This loss can be reversed by inhibiting inducible nitric oxide synthase. It is likely that future research will reveal additional important functions of the release of transmitters from glial cells.</description><identifier>ISSN: 0962-8436</identifier><identifier>EISSN: 1471-2970</identifier><identifier>DOI: 10.1098/rstb.2014.0195</identifier><identifier>PMID: 26009774</identifier><language>eng</language><publisher>England: THE ROYAL SOCIETY</publisher><subject>Action Potentials - physiology ; Astrocyte ; Blood Flow ; Diabetic Retinopathy ; Ependymoglial Cells - metabolism ; Ependymoglial Cells - physiology ; G Protein-Coupled Inwardly-Rectifying Potassium Channels - metabolism ; Gliotransmitters ; Humans ; Neurotransmitter Agents - metabolism ; Neurovascular Coupling ; Regional Blood Flow - physiology ; Retina ; Retinal Neurons - physiology ; Retinal Vessels - physiology ; Review ; Small-Conductance Calcium-Activated Potassium Channels - metabolism</subject><ispartof>Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2015-07, Vol.370 (1672), p.1-9</ispartof><rights>The Royal Society, 2015</rights><rights>2015 The Author(s) Published by the Royal Society. All rights reserved.</rights><rights>2015 The Author(s) Published by the Royal Society. All rights reserved. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-f62d6e3863a55a1c086b8adcf36321b46902ec66e147c9cab31c780f4cd63aa63</citedby><cites>FETCH-LOGICAL-c555t-f62d6e3863a55a1c086b8adcf36321b46902ec66e147c9cab31c780f4cd63aa63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24504962$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24504962$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26009774$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Newman, Eric A.</creatorcontrib><title>Glial cell regulation of neuronal activity and blood flow in the retina by release of gliotransmitters</title><title>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</title><addtitle>Phil. Trans. R. Soc. B</addtitle><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><description>Astrocytes in the brain release transmitters that actively modulate neuronal excitability and synaptic efficacy. Astrocytes also release vasoactive agents that contribute to neurovascular coupling. As reviewed in this article, Müller cells, the principal retinal glial cells, modulate neuronal activity and blood flow in the retina. Stimulated Müller cells release ATP which, following its conversion to adenosine by ectoenzymes, hyperpolarizes retinal ganglion cells by activation of A1 adenosine receptors. This results in the opening of G protein-coupled inwardly rectifying potassium (GIRK) channels and small conductance Ca2+-activated K+ (SK) channels. Tonic release of ATP also contributes to the generation of tone in the retinal vasculature by activation of P2X receptors on vascular smooth muscle cells. Vascular tone is lost when glial cells are poisoned with the gliotoxin fluorocitrate. The glial release of vasoactive metabolites of arachidonic acid, including prostaglandin E2 (PGE2) and epoxyeicosatrienoic acids (EETs), contributes to neurovascular coupling in the retina. Neurovascular coupling is reduced when neuronal stimulation of glial cells is interrupted and when the synthesis of arachidonic acid metabolites is blocked. Neurovascular coupling is compromised in diabetic retinopathy owing to the loss of glial-mediated vasodilation. This loss can be reversed by inhibiting inducible nitric oxide synthase. It is likely that future research will reveal additional important functions of the release of transmitters from glial cells.</description><subject>Action Potentials - physiology</subject><subject>Astrocyte</subject><subject>Blood Flow</subject><subject>Diabetic Retinopathy</subject><subject>Ependymoglial Cells - metabolism</subject><subject>Ependymoglial Cells - physiology</subject><subject>G Protein-Coupled Inwardly-Rectifying Potassium Channels - metabolism</subject><subject>Gliotransmitters</subject><subject>Humans</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Neurovascular Coupling</subject><subject>Regional Blood Flow - physiology</subject><subject>Retina</subject><subject>Retinal Neurons - physiology</subject><subject>Retinal Vessels - physiology</subject><subject>Review</subject><subject>Small-Conductance Calcium-Activated Potassium Channels - metabolism</subject><issn>0962-8436</issn><issn>1471-2970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1ks1v1DAQxS0EotuWKzeQj1yyteOPxBckVEGLVKkXerYcZ7L1ymsX22mV_x5HWwocOHmkee95PD8j9J6SLSWqv0i5DNuWUL4lVIlXaEN5R5tWdeQ12hAl26bnTJ6g05z3hBAlOv4WnbSyll3HN2i68s54bMF7nGA3e1NcDDhOOMCcYqg9Y4t7dGXBJox48DGOePLxCbuAyz1UV3HB4GGplQeTYTXvvIslmZAPrhRI-Ry9mYzP8O75PEN3377-uLxubm6vvl9-uWmsEKI0k2xHCayXzAhhqCW9HHoz2olJ1tKBS0VasFJCfaVV1gyM2q4nE7djtRjJztDnY-7DPBxgtBDqFF4_JHcwadHROP1vJ7h7vYuPmnMhOslrwKfngBR_zpCLPri8bscEiHPWtK8zKaHYKt0epTbFnBNML9dQolc4eoWjVzh6hVMNH_8e7kX-m0YVsKMgxaVuKVoHZdH7OKfKIf8_9sPRtc8lpj-pXBBePwD7BSrIqRk</recordid><startdate>20150705</startdate><enddate>20150705</enddate><creator>Newman, Eric A.</creator><general>THE ROYAL SOCIETY</general><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TK</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>20150705</creationdate><title>Glial cell regulation of neuronal activity and blood flow in the retina by release of gliotransmitters</title><author>Newman, Eric A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-f62d6e3863a55a1c086b8adcf36321b46902ec66e147c9cab31c780f4cd63aa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Action Potentials - physiology</topic><topic>Astrocyte</topic><topic>Blood Flow</topic><topic>Diabetic Retinopathy</topic><topic>Ependymoglial Cells - metabolism</topic><topic>Ependymoglial Cells - physiology</topic><topic>G Protein-Coupled Inwardly-Rectifying Potassium Channels - metabolism</topic><topic>Gliotransmitters</topic><topic>Humans</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Neurovascular Coupling</topic><topic>Regional Blood Flow - physiology</topic><topic>Retina</topic><topic>Retinal Neurons - physiology</topic><topic>Retinal Vessels - physiology</topic><topic>Review</topic><topic>Small-Conductance Calcium-Activated Potassium Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Newman, Eric A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Newman, Eric A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glial cell regulation of neuronal activity and blood flow in the retina by release of gliotransmitters</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle><stitle>Phil. Trans. R. Soc. B</stitle><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><date>2015-07-05</date><risdate>2015</risdate><volume>370</volume><issue>1672</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0962-8436</issn><eissn>1471-2970</eissn><abstract>Astrocytes in the brain release transmitters that actively modulate neuronal excitability and synaptic efficacy. Astrocytes also release vasoactive agents that contribute to neurovascular coupling. As reviewed in this article, Müller cells, the principal retinal glial cells, modulate neuronal activity and blood flow in the retina. Stimulated Müller cells release ATP which, following its conversion to adenosine by ectoenzymes, hyperpolarizes retinal ganglion cells by activation of A1 adenosine receptors. This results in the opening of G protein-coupled inwardly rectifying potassium (GIRK) channels and small conductance Ca2+-activated K+ (SK) channels. Tonic release of ATP also contributes to the generation of tone in the retinal vasculature by activation of P2X receptors on vascular smooth muscle cells. Vascular tone is lost when glial cells are poisoned with the gliotoxin fluorocitrate. The glial release of vasoactive metabolites of arachidonic acid, including prostaglandin E2 (PGE2) and epoxyeicosatrienoic acids (EETs), contributes to neurovascular coupling in the retina. Neurovascular coupling is reduced when neuronal stimulation of glial cells is interrupted and when the synthesis of arachidonic acid metabolites is blocked. Neurovascular coupling is compromised in diabetic retinopathy owing to the loss of glial-mediated vasodilation. This loss can be reversed by inhibiting inducible nitric oxide synthase. It is likely that future research will reveal additional important functions of the release of transmitters from glial cells.</abstract><cop>England</cop><pub>THE ROYAL SOCIETY</pub><pmid>26009774</pmid><doi>10.1098/rstb.2014.0195</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8436
ispartof Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2015-07, Vol.370 (1672), p.1-9
issn 0962-8436
1471-2970
language eng
recordid cdi_royalsociety_journals_10_1098_rstb_2014_0195
source Jstor Complete Legacy; MEDLINE; PubMed Central
subjects Action Potentials - physiology
Astrocyte
Blood Flow
Diabetic Retinopathy
Ependymoglial Cells - metabolism
Ependymoglial Cells - physiology
G Protein-Coupled Inwardly-Rectifying Potassium Channels - metabolism
Gliotransmitters
Humans
Neurotransmitter Agents - metabolism
Neurovascular Coupling
Regional Blood Flow - physiology
Retina
Retinal Neurons - physiology
Retinal Vessels - physiology
Review
Small-Conductance Calcium-Activated Potassium Channels - metabolism
title Glial cell regulation of neuronal activity and blood flow in the retina by release of gliotransmitters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glial%20cell%20regulation%20of%20neuronal%20activity%20and%20blood%20flow%20in%20the%20retina%20by%20release%20of%20gliotransmitters&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20B.%20Biological%20sciences&rft.au=Newman,%20Eric%20A.&rft.date=2015-07-05&rft.volume=370&rft.issue=1672&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0962-8436&rft.eissn=1471-2970&rft_id=info:doi/10.1098/rstb.2014.0195&rft_dat=%3Cjstor_royal%3E24504962%3C/jstor_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808695934&rft_id=info:pmid/26009774&rft_jstor_id=24504962&rfr_iscdi=true