Coping with the cold: the cold shock response in the Gram-positive soil bacterium Bacillus subtilis
All organisms examined to date, respond to a sudden change in environmental temperature with a specific cascade of adaptation reactions that, in some cases, have been identified and monitored at the molecular level. According to the type of temperature change, this response has been termed heat shoc...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2002-07, Vol.357 (1423), p.895-907 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 907 |
---|---|
container_issue | 1423 |
container_start_page | 895 |
container_title | Philosophical transactions of the Royal Society of London. Series B. Biological sciences |
container_volume | 357 |
creator | Weber, Michael H. W. Marahiel, Mohamed A. |
description | All organisms examined to date, respond to a sudden change in environmental temperature with a specific cascade of adaptation reactions that, in some cases, have been identified and monitored at the molecular level. According to the type of temperature change, this response has been termed heat shock response (HSR) or cold shock response (CSR). During the HSR, a specialized sigma factor has been shown to play a central regulatory role in controlling expression of genes predominantly required to cope with heat-induced alteration of protein conformation. In contrast, after cold shock, nucleic acid structure and proteins interacting with the biological information molecules DNA and RNA appear to play a major cellular role. Currently, no cold-specific sigma factor has been identified. Therefore, unlike the HSR, the CSR appears to be organized as a complex stimulon rather than resembling a regulon. This review has been designed to draw a refined picture of our current understanding of the CSR in Bacillus subtilis. Important processes such as temperature sensing, membrane adaptation, modification of the translation apparatus, as well as nucleoid reorganization and some metabolic aspects, are discussed in brief. Special emphasis is placed on recent findings concerning the nucleic acid binding cold shock proteins, which play a fundamental role, not only during cold shock adaptation but also under optimal growth conditions. |
doi_str_mv | 10.1098/rstb.2002.1078 |
format | Article |
fullrecord | <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rstb_2002_1078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3066908</jstor_id><sourcerecordid>3066908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c694t-54d22cfa59a78a8ff431b2f655fae8a16bc643087afe4996206e8fd5947bf81e3</originalsourceid><addsrcrecordid>eNp9kUGP0zAQhSMEYsvClRNCOXFLsWPHjjmA2AILYiWkUjhwsRzXbt1N42A7Xcqvx0mqshViT7Y137w345ckTyGYQsDKl86HapoDkMcnLe8lE4gpzHJGwf1kAhjJsxIjcpY88n4DAGAFxQ-TM5hDCkmBJomc2dY0q_TGhHUa1iqVtl6-Ot5Sv7byOnXKt7bxKjXNULp0Ypu11ptgdir11tRpJWRQznTb9EJIU9edT31XBVMb_zh5oEXt1ZPDeZ58-_B-MfuYXX25_DR7e5VJwnDICrzMc6lFwQQtRak1RrDKNSkKLVQpIKkkwQiUVGiFWVwNEFXqZcEwrXQJFTpPXo-6bVdt1VKqJjhR89aZrXB7boXhp5XGrPnK7jgkDAEAo8CLg4CzPzvlA98aL1Vdi0bZznMKGaUA9uB0BKWz3juljyYQ8D4X3ufC-1x4n0tseH57tL_4IYgIoBFwdh__yEqjwp5vbOea-Py_rL-ra_51cQEZAztUUANxjjgoUWzEEBH-27SDXA_wCHDjfaf4gJ3a_Ov6bHTd-GDdcRcECGGgL2dj2figfh3Lwl1zQhEt-PcS83dz8mMx_zznPf9m5Ndmtb4xTvGTbQZzaZsQQxvmHCYsWcF1V8d0lzoqgDsV7L6NGrd70R_lqALE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71977011</pqid></control><display><type>article</type><title>Coping with the cold: the cold shock response in the Gram-positive soil bacterium Bacillus subtilis</title><source>MEDLINE</source><source>PubMed Central</source><source>JSTOR</source><creator>Weber, Michael H. W. ; Marahiel, Mohamed A.</creator><contributor>Shanks, I. A. ; Rees, D. A. ; Bowles, D. J. ; Lillford, P. J. ; Bowles, D. J. ; Shanks, I. A. ; Rees, D. A. ; Lillford, P. J.</contributor><creatorcontrib>Weber, Michael H. W. ; Marahiel, Mohamed A. ; Shanks, I. A. ; Rees, D. A. ; Bowles, D. J. ; Lillford, P. J. ; Bowles, D. J. ; Shanks, I. A. ; Rees, D. A. ; Lillford, P. J.</creatorcontrib><description>All organisms examined to date, respond to a sudden change in environmental temperature with a specific cascade of adaptation reactions that, in some cases, have been identified and monitored at the molecular level. According to the type of temperature change, this response has been termed heat shock response (HSR) or cold shock response (CSR). During the HSR, a specialized sigma factor has been shown to play a central regulatory role in controlling expression of genes predominantly required to cope with heat-induced alteration of protein conformation. In contrast, after cold shock, nucleic acid structure and proteins interacting with the biological information molecules DNA and RNA appear to play a major cellular role. Currently, no cold-specific sigma factor has been identified. Therefore, unlike the HSR, the CSR appears to be organized as a complex stimulon rather than resembling a regulon. This review has been designed to draw a refined picture of our current understanding of the CSR in Bacillus subtilis. Important processes such as temperature sensing, membrane adaptation, modification of the translation apparatus, as well as nucleoid reorganization and some metabolic aspects, are discussed in brief. Special emphasis is placed on recent findings concerning the nucleic acid binding cold shock proteins, which play a fundamental role, not only during cold shock adaptation but also under optimal growth conditions.</description><identifier>ISSN: 0962-8436</identifier><identifier>EISSN: 1471-2970</identifier><identifier>DOI: 10.1098/rstb.2002.1078</identifier><identifier>PMID: 12171653</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Adaptation, Physiological ; Amino Acid Sequence ; Bacillus Subtilis ; Bacillus subtilis - cytology ; Bacillus subtilis - genetics ; Bacillus subtilis - metabolism ; Bacillus subtilis - physiology ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Cold Shock Proteins ; Cold shock response ; Cold Temperature ; Desks ; DNA ; Escherichia coli ; Gene Expression Regulation, Bacterial ; Genes ; Heat-Shock Proteins - chemistry ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - metabolism ; Membrane ; Messenger RNA ; Metabolism ; Molecular Sequence Data ; Nucleic acids ; Nucleoid ; Protein Conformation ; Ribosome ; Ribosomes ; RNA</subject><ispartof>Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2002-07, Vol.357 (1423), p.895-907</ispartof><rights>Copyright 2002 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c694t-54d22cfa59a78a8ff431b2f655fae8a16bc643087afe4996206e8fd5947bf81e3</citedby><cites>FETCH-LOGICAL-c694t-54d22cfa59a78a8ff431b2f655fae8a16bc643087afe4996206e8fd5947bf81e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3066908$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3066908$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12171653$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Shanks, I. A.</contributor><contributor>Rees, D. A.</contributor><contributor>Bowles, D. J.</contributor><contributor>Lillford, P. J.</contributor><contributor>Bowles, D. J.</contributor><contributor>Shanks, I. A.</contributor><contributor>Rees, D. A.</contributor><contributor>Lillford, P. J.</contributor><creatorcontrib>Weber, Michael H. W.</creatorcontrib><creatorcontrib>Marahiel, Mohamed A.</creatorcontrib><title>Coping with the cold: the cold shock response in the Gram-positive soil bacterium Bacillus subtilis</title><title>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</title><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><description>All organisms examined to date, respond to a sudden change in environmental temperature with a specific cascade of adaptation reactions that, in some cases, have been identified and monitored at the molecular level. According to the type of temperature change, this response has been termed heat shock response (HSR) or cold shock response (CSR). During the HSR, a specialized sigma factor has been shown to play a central regulatory role in controlling expression of genes predominantly required to cope with heat-induced alteration of protein conformation. In contrast, after cold shock, nucleic acid structure and proteins interacting with the biological information molecules DNA and RNA appear to play a major cellular role. Currently, no cold-specific sigma factor has been identified. Therefore, unlike the HSR, the CSR appears to be organized as a complex stimulon rather than resembling a regulon. This review has been designed to draw a refined picture of our current understanding of the CSR in Bacillus subtilis. Important processes such as temperature sensing, membrane adaptation, modification of the translation apparatus, as well as nucleoid reorganization and some metabolic aspects, are discussed in brief. Special emphasis is placed on recent findings concerning the nucleic acid binding cold shock proteins, which play a fundamental role, not only during cold shock adaptation but also under optimal growth conditions.</description><subject>Adaptation, Physiological</subject><subject>Amino Acid Sequence</subject><subject>Bacillus Subtilis</subject><subject>Bacillus subtilis - cytology</subject><subject>Bacillus subtilis - genetics</subject><subject>Bacillus subtilis - metabolism</subject><subject>Bacillus subtilis - physiology</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Cold Shock Proteins</subject><subject>Cold shock response</subject><subject>Cold Temperature</subject><subject>Desks</subject><subject>DNA</subject><subject>Escherichia coli</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes</subject><subject>Heat-Shock Proteins - chemistry</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Membrane</subject><subject>Messenger RNA</subject><subject>Metabolism</subject><subject>Molecular Sequence Data</subject><subject>Nucleic acids</subject><subject>Nucleoid</subject><subject>Protein Conformation</subject><subject>Ribosome</subject><subject>Ribosomes</subject><subject>RNA</subject><issn>0962-8436</issn><issn>1471-2970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUGP0zAQhSMEYsvClRNCOXFLsWPHjjmA2AILYiWkUjhwsRzXbt1N42A7Xcqvx0mqshViT7Y137w345ckTyGYQsDKl86HapoDkMcnLe8lE4gpzHJGwf1kAhjJsxIjcpY88n4DAGAFxQ-TM5hDCkmBJomc2dY0q_TGhHUa1iqVtl6-Ot5Sv7byOnXKt7bxKjXNULp0Ypu11ptgdir11tRpJWRQznTb9EJIU9edT31XBVMb_zh5oEXt1ZPDeZ58-_B-MfuYXX25_DR7e5VJwnDICrzMc6lFwQQtRak1RrDKNSkKLVQpIKkkwQiUVGiFWVwNEFXqZcEwrXQJFTpPXo-6bVdt1VKqJjhR89aZrXB7boXhp5XGrPnK7jgkDAEAo8CLg4CzPzvlA98aL1Vdi0bZznMKGaUA9uB0BKWz3juljyYQ8D4X3ufC-1x4n0tseH57tL_4IYgIoBFwdh__yEqjwp5vbOea-Py_rL-ra_51cQEZAztUUANxjjgoUWzEEBH-27SDXA_wCHDjfaf4gJ3a_Ov6bHTd-GDdcRcECGGgL2dj2figfh3Lwl1zQhEt-PcS83dz8mMx_zznPf9m5Ndmtb4xTvGTbQZzaZsQQxvmHCYsWcF1V8d0lzoqgDsV7L6NGrd70R_lqALE</recordid><startdate>20020729</startdate><enddate>20020729</enddate><creator>Weber, Michael H. W.</creator><creator>Marahiel, Mohamed A.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20020729</creationdate><title>Coping with the cold: the cold shock response in the Gram-positive soil bacterium Bacillus subtilis</title><author>Weber, Michael H. W. ; Marahiel, Mohamed A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c694t-54d22cfa59a78a8ff431b2f655fae8a16bc643087afe4996206e8fd5947bf81e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Adaptation, Physiological</topic><topic>Amino Acid Sequence</topic><topic>Bacillus Subtilis</topic><topic>Bacillus subtilis - cytology</topic><topic>Bacillus subtilis - genetics</topic><topic>Bacillus subtilis - metabolism</topic><topic>Bacillus subtilis - physiology</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Cold Shock Proteins</topic><topic>Cold shock response</topic><topic>Cold Temperature</topic><topic>Desks</topic><topic>DNA</topic><topic>Escherichia coli</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes</topic><topic>Heat-Shock Proteins - chemistry</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Membrane</topic><topic>Messenger RNA</topic><topic>Metabolism</topic><topic>Molecular Sequence Data</topic><topic>Nucleic acids</topic><topic>Nucleoid</topic><topic>Protein Conformation</topic><topic>Ribosome</topic><topic>Ribosomes</topic><topic>RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, Michael H. W.</creatorcontrib><creatorcontrib>Marahiel, Mohamed A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, Michael H. W.</au><au>Marahiel, Mohamed A.</au><au>Shanks, I. A.</au><au>Rees, D. A.</au><au>Bowles, D. J.</au><au>Lillford, P. J.</au><au>Bowles, D. J.</au><au>Shanks, I. A.</au><au>Rees, D. A.</au><au>Lillford, P. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coping with the cold: the cold shock response in the Gram-positive soil bacterium Bacillus subtilis</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><date>2002-07-29</date><risdate>2002</risdate><volume>357</volume><issue>1423</issue><spage>895</spage><epage>907</epage><pages>895-907</pages><issn>0962-8436</issn><eissn>1471-2970</eissn><abstract>All organisms examined to date, respond to a sudden change in environmental temperature with a specific cascade of adaptation reactions that, in some cases, have been identified and monitored at the molecular level. According to the type of temperature change, this response has been termed heat shock response (HSR) or cold shock response (CSR). During the HSR, a specialized sigma factor has been shown to play a central regulatory role in controlling expression of genes predominantly required to cope with heat-induced alteration of protein conformation. In contrast, after cold shock, nucleic acid structure and proteins interacting with the biological information molecules DNA and RNA appear to play a major cellular role. Currently, no cold-specific sigma factor has been identified. Therefore, unlike the HSR, the CSR appears to be organized as a complex stimulon rather than resembling a regulon. This review has been designed to draw a refined picture of our current understanding of the CSR in Bacillus subtilis. Important processes such as temperature sensing, membrane adaptation, modification of the translation apparatus, as well as nucleoid reorganization and some metabolic aspects, are discussed in brief. Special emphasis is placed on recent findings concerning the nucleic acid binding cold shock proteins, which play a fundamental role, not only during cold shock adaptation but also under optimal growth conditions.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>12171653</pmid><doi>10.1098/rstb.2002.1078</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8436 |
ispartof | Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2002-07, Vol.357 (1423), p.895-907 |
issn | 0962-8436 1471-2970 |
language | eng |
recordid | cdi_royalsociety_journals_10_1098_rstb_2002_1078 |
source | MEDLINE; PubMed Central; JSTOR |
subjects | Adaptation, Physiological Amino Acid Sequence Bacillus Subtilis Bacillus subtilis - cytology Bacillus subtilis - genetics Bacillus subtilis - metabolism Bacillus subtilis - physiology Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Cold Shock Proteins Cold shock response Cold Temperature Desks DNA Escherichia coli Gene Expression Regulation, Bacterial Genes Heat-Shock Proteins - chemistry Heat-Shock Proteins - genetics Heat-Shock Proteins - metabolism Membrane Messenger RNA Metabolism Molecular Sequence Data Nucleic acids Nucleoid Protein Conformation Ribosome Ribosomes RNA |
title | Coping with the cold: the cold shock response in the Gram-positive soil bacterium Bacillus subtilis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T21%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coping%20with%20the%20cold:%20the%20cold%20shock%20response%20in%20the%20Gram-positive%20soil%20bacterium%20Bacillus%20subtilis&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20B.%20Biological%20sciences&rft.au=Weber,%20Michael%20H.%20W.&rft.date=2002-07-29&rft.volume=357&rft.issue=1423&rft.spage=895&rft.epage=907&rft.pages=895-907&rft.issn=0962-8436&rft.eissn=1471-2970&rft_id=info:doi/10.1098/rstb.2002.1078&rft_dat=%3Cjstor_royal%3E3066908%3C/jstor_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71977011&rft_id=info:pmid/12171653&rft_jstor_id=3066908&rfr_iscdi=true |