Coping with the cold: the cold shock response in the Gram-positive soil bacterium Bacillus subtilis

All organisms examined to date, respond to a sudden change in environmental temperature with a specific cascade of adaptation reactions that, in some cases, have been identified and monitored at the molecular level. According to the type of temperature change, this response has been termed heat shoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2002-07, Vol.357 (1423), p.895-907
Hauptverfasser: Weber, Michael H. W., Marahiel, Mohamed A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 907
container_issue 1423
container_start_page 895
container_title Philosophical transactions of the Royal Society of London. Series B. Biological sciences
container_volume 357
creator Weber, Michael H. W.
Marahiel, Mohamed A.
description All organisms examined to date, respond to a sudden change in environmental temperature with a specific cascade of adaptation reactions that, in some cases, have been identified and monitored at the molecular level. According to the type of temperature change, this response has been termed heat shock response (HSR) or cold shock response (CSR). During the HSR, a specialized sigma factor has been shown to play a central regulatory role in controlling expression of genes predominantly required to cope with heat-induced alteration of protein conformation. In contrast, after cold shock, nucleic acid structure and proteins interacting with the biological information molecules DNA and RNA appear to play a major cellular role. Currently, no cold-specific sigma factor has been identified. Therefore, unlike the HSR, the CSR appears to be organized as a complex stimulon rather than resembling a regulon. This review has been designed to draw a refined picture of our current understanding of the CSR in Bacillus subtilis. Important processes such as temperature sensing, membrane adaptation, modification of the translation apparatus, as well as nucleoid reorganization and some metabolic aspects, are discussed in brief. Special emphasis is placed on recent findings concerning the nucleic acid binding cold shock proteins, which play a fundamental role, not only during cold shock adaptation but also under optimal growth conditions.
doi_str_mv 10.1098/rstb.2002.1078
format Article
fullrecord <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rstb_2002_1078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3066908</jstor_id><sourcerecordid>3066908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c694t-54d22cfa59a78a8ff431b2f655fae8a16bc643087afe4996206e8fd5947bf81e3</originalsourceid><addsrcrecordid>eNp9kUGP0zAQhSMEYsvClRNCOXFLsWPHjjmA2AILYiWkUjhwsRzXbt1N42A7Xcqvx0mqshViT7Y137w345ckTyGYQsDKl86HapoDkMcnLe8lE4gpzHJGwf1kAhjJsxIjcpY88n4DAGAFxQ-TM5hDCkmBJomc2dY0q_TGhHUa1iqVtl6-Ot5Sv7byOnXKt7bxKjXNULp0Ypu11ptgdir11tRpJWRQznTb9EJIU9edT31XBVMb_zh5oEXt1ZPDeZ58-_B-MfuYXX25_DR7e5VJwnDICrzMc6lFwQQtRak1RrDKNSkKLVQpIKkkwQiUVGiFWVwNEFXqZcEwrXQJFTpPXo-6bVdt1VKqJjhR89aZrXB7boXhp5XGrPnK7jgkDAEAo8CLg4CzPzvlA98aL1Vdi0bZznMKGaUA9uB0BKWz3juljyYQ8D4X3ufC-1x4n0tseH57tL_4IYgIoBFwdh__yEqjwp5vbOea-Py_rL-ra_51cQEZAztUUANxjjgoUWzEEBH-27SDXA_wCHDjfaf4gJ3a_Ov6bHTd-GDdcRcECGGgL2dj2figfh3Lwl1zQhEt-PcS83dz8mMx_zznPf9m5Ndmtb4xTvGTbQZzaZsQQxvmHCYsWcF1V8d0lzoqgDsV7L6NGrd70R_lqALE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71977011</pqid></control><display><type>article</type><title>Coping with the cold: the cold shock response in the Gram-positive soil bacterium Bacillus subtilis</title><source>MEDLINE</source><source>PubMed Central</source><source>JSTOR</source><creator>Weber, Michael H. W. ; Marahiel, Mohamed A.</creator><contributor>Shanks, I. A. ; Rees, D. A. ; Bowles, D. J. ; Lillford, P. J. ; Bowles, D. J. ; Shanks, I. A. ; Rees, D. A. ; Lillford, P. J.</contributor><creatorcontrib>Weber, Michael H. W. ; Marahiel, Mohamed A. ; Shanks, I. A. ; Rees, D. A. ; Bowles, D. J. ; Lillford, P. J. ; Bowles, D. J. ; Shanks, I. A. ; Rees, D. A. ; Lillford, P. J.</creatorcontrib><description>All organisms examined to date, respond to a sudden change in environmental temperature with a specific cascade of adaptation reactions that, in some cases, have been identified and monitored at the molecular level. According to the type of temperature change, this response has been termed heat shock response (HSR) or cold shock response (CSR). During the HSR, a specialized sigma factor has been shown to play a central regulatory role in controlling expression of genes predominantly required to cope with heat-induced alteration of protein conformation. In contrast, after cold shock, nucleic acid structure and proteins interacting with the biological information molecules DNA and RNA appear to play a major cellular role. Currently, no cold-specific sigma factor has been identified. Therefore, unlike the HSR, the CSR appears to be organized as a complex stimulon rather than resembling a regulon. This review has been designed to draw a refined picture of our current understanding of the CSR in Bacillus subtilis. Important processes such as temperature sensing, membrane adaptation, modification of the translation apparatus, as well as nucleoid reorganization and some metabolic aspects, are discussed in brief. Special emphasis is placed on recent findings concerning the nucleic acid binding cold shock proteins, which play a fundamental role, not only during cold shock adaptation but also under optimal growth conditions.</description><identifier>ISSN: 0962-8436</identifier><identifier>EISSN: 1471-2970</identifier><identifier>DOI: 10.1098/rstb.2002.1078</identifier><identifier>PMID: 12171653</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Adaptation, Physiological ; Amino Acid Sequence ; Bacillus Subtilis ; Bacillus subtilis - cytology ; Bacillus subtilis - genetics ; Bacillus subtilis - metabolism ; Bacillus subtilis - physiology ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Cold Shock Proteins ; Cold shock response ; Cold Temperature ; Desks ; DNA ; Escherichia coli ; Gene Expression Regulation, Bacterial ; Genes ; Heat-Shock Proteins - chemistry ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - metabolism ; Membrane ; Messenger RNA ; Metabolism ; Molecular Sequence Data ; Nucleic acids ; Nucleoid ; Protein Conformation ; Ribosome ; Ribosomes ; RNA</subject><ispartof>Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2002-07, Vol.357 (1423), p.895-907</ispartof><rights>Copyright 2002 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c694t-54d22cfa59a78a8ff431b2f655fae8a16bc643087afe4996206e8fd5947bf81e3</citedby><cites>FETCH-LOGICAL-c694t-54d22cfa59a78a8ff431b2f655fae8a16bc643087afe4996206e8fd5947bf81e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3066908$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3066908$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12171653$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Shanks, I. A.</contributor><contributor>Rees, D. A.</contributor><contributor>Bowles, D. J.</contributor><contributor>Lillford, P. J.</contributor><contributor>Bowles, D. J.</contributor><contributor>Shanks, I. A.</contributor><contributor>Rees, D. A.</contributor><contributor>Lillford, P. J.</contributor><creatorcontrib>Weber, Michael H. W.</creatorcontrib><creatorcontrib>Marahiel, Mohamed A.</creatorcontrib><title>Coping with the cold: the cold shock response in the Gram-positive soil bacterium Bacillus subtilis</title><title>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</title><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><description>All organisms examined to date, respond to a sudden change in environmental temperature with a specific cascade of adaptation reactions that, in some cases, have been identified and monitored at the molecular level. According to the type of temperature change, this response has been termed heat shock response (HSR) or cold shock response (CSR). During the HSR, a specialized sigma factor has been shown to play a central regulatory role in controlling expression of genes predominantly required to cope with heat-induced alteration of protein conformation. In contrast, after cold shock, nucleic acid structure and proteins interacting with the biological information molecules DNA and RNA appear to play a major cellular role. Currently, no cold-specific sigma factor has been identified. Therefore, unlike the HSR, the CSR appears to be organized as a complex stimulon rather than resembling a regulon. This review has been designed to draw a refined picture of our current understanding of the CSR in Bacillus subtilis. Important processes such as temperature sensing, membrane adaptation, modification of the translation apparatus, as well as nucleoid reorganization and some metabolic aspects, are discussed in brief. Special emphasis is placed on recent findings concerning the nucleic acid binding cold shock proteins, which play a fundamental role, not only during cold shock adaptation but also under optimal growth conditions.</description><subject>Adaptation, Physiological</subject><subject>Amino Acid Sequence</subject><subject>Bacillus Subtilis</subject><subject>Bacillus subtilis - cytology</subject><subject>Bacillus subtilis - genetics</subject><subject>Bacillus subtilis - metabolism</subject><subject>Bacillus subtilis - physiology</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Cold Shock Proteins</subject><subject>Cold shock response</subject><subject>Cold Temperature</subject><subject>Desks</subject><subject>DNA</subject><subject>Escherichia coli</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes</subject><subject>Heat-Shock Proteins - chemistry</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Membrane</subject><subject>Messenger RNA</subject><subject>Metabolism</subject><subject>Molecular Sequence Data</subject><subject>Nucleic acids</subject><subject>Nucleoid</subject><subject>Protein Conformation</subject><subject>Ribosome</subject><subject>Ribosomes</subject><subject>RNA</subject><issn>0962-8436</issn><issn>1471-2970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUGP0zAQhSMEYsvClRNCOXFLsWPHjjmA2AILYiWkUjhwsRzXbt1N42A7Xcqvx0mqshViT7Y137w345ckTyGYQsDKl86HapoDkMcnLe8lE4gpzHJGwf1kAhjJsxIjcpY88n4DAGAFxQ-TM5hDCkmBJomc2dY0q_TGhHUa1iqVtl6-Ot5Sv7byOnXKt7bxKjXNULp0Ypu11ptgdir11tRpJWRQznTb9EJIU9edT31XBVMb_zh5oEXt1ZPDeZ58-_B-MfuYXX25_DR7e5VJwnDICrzMc6lFwQQtRak1RrDKNSkKLVQpIKkkwQiUVGiFWVwNEFXqZcEwrXQJFTpPXo-6bVdt1VKqJjhR89aZrXB7boXhp5XGrPnK7jgkDAEAo8CLg4CzPzvlA98aL1Vdi0bZznMKGaUA9uB0BKWz3juljyYQ8D4X3ufC-1x4n0tseH57tL_4IYgIoBFwdh__yEqjwp5vbOea-Py_rL-ra_51cQEZAztUUANxjjgoUWzEEBH-27SDXA_wCHDjfaf4gJ3a_Ov6bHTd-GDdcRcECGGgL2dj2figfh3Lwl1zQhEt-PcS83dz8mMx_zznPf9m5Ndmtb4xTvGTbQZzaZsQQxvmHCYsWcF1V8d0lzoqgDsV7L6NGrd70R_lqALE</recordid><startdate>20020729</startdate><enddate>20020729</enddate><creator>Weber, Michael H. W.</creator><creator>Marahiel, Mohamed A.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20020729</creationdate><title>Coping with the cold: the cold shock response in the Gram-positive soil bacterium Bacillus subtilis</title><author>Weber, Michael H. W. ; Marahiel, Mohamed A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c694t-54d22cfa59a78a8ff431b2f655fae8a16bc643087afe4996206e8fd5947bf81e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Adaptation, Physiological</topic><topic>Amino Acid Sequence</topic><topic>Bacillus Subtilis</topic><topic>Bacillus subtilis - cytology</topic><topic>Bacillus subtilis - genetics</topic><topic>Bacillus subtilis - metabolism</topic><topic>Bacillus subtilis - physiology</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Cold Shock Proteins</topic><topic>Cold shock response</topic><topic>Cold Temperature</topic><topic>Desks</topic><topic>DNA</topic><topic>Escherichia coli</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes</topic><topic>Heat-Shock Proteins - chemistry</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Membrane</topic><topic>Messenger RNA</topic><topic>Metabolism</topic><topic>Molecular Sequence Data</topic><topic>Nucleic acids</topic><topic>Nucleoid</topic><topic>Protein Conformation</topic><topic>Ribosome</topic><topic>Ribosomes</topic><topic>RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, Michael H. W.</creatorcontrib><creatorcontrib>Marahiel, Mohamed A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, Michael H. W.</au><au>Marahiel, Mohamed A.</au><au>Shanks, I. A.</au><au>Rees, D. A.</au><au>Bowles, D. J.</au><au>Lillford, P. J.</au><au>Bowles, D. J.</au><au>Shanks, I. A.</au><au>Rees, D. A.</au><au>Lillford, P. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coping with the cold: the cold shock response in the Gram-positive soil bacterium Bacillus subtilis</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><date>2002-07-29</date><risdate>2002</risdate><volume>357</volume><issue>1423</issue><spage>895</spage><epage>907</epage><pages>895-907</pages><issn>0962-8436</issn><eissn>1471-2970</eissn><abstract>All organisms examined to date, respond to a sudden change in environmental temperature with a specific cascade of adaptation reactions that, in some cases, have been identified and monitored at the molecular level. According to the type of temperature change, this response has been termed heat shock response (HSR) or cold shock response (CSR). During the HSR, a specialized sigma factor has been shown to play a central regulatory role in controlling expression of genes predominantly required to cope with heat-induced alteration of protein conformation. In contrast, after cold shock, nucleic acid structure and proteins interacting with the biological information molecules DNA and RNA appear to play a major cellular role. Currently, no cold-specific sigma factor has been identified. Therefore, unlike the HSR, the CSR appears to be organized as a complex stimulon rather than resembling a regulon. This review has been designed to draw a refined picture of our current understanding of the CSR in Bacillus subtilis. Important processes such as temperature sensing, membrane adaptation, modification of the translation apparatus, as well as nucleoid reorganization and some metabolic aspects, are discussed in brief. Special emphasis is placed on recent findings concerning the nucleic acid binding cold shock proteins, which play a fundamental role, not only during cold shock adaptation but also under optimal growth conditions.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>12171653</pmid><doi>10.1098/rstb.2002.1078</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8436
ispartof Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2002-07, Vol.357 (1423), p.895-907
issn 0962-8436
1471-2970
language eng
recordid cdi_royalsociety_journals_10_1098_rstb_2002_1078
source MEDLINE; PubMed Central; JSTOR
subjects Adaptation, Physiological
Amino Acid Sequence
Bacillus Subtilis
Bacillus subtilis - cytology
Bacillus subtilis - genetics
Bacillus subtilis - metabolism
Bacillus subtilis - physiology
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Cold Shock Proteins
Cold shock response
Cold Temperature
Desks
DNA
Escherichia coli
Gene Expression Regulation, Bacterial
Genes
Heat-Shock Proteins - chemistry
Heat-Shock Proteins - genetics
Heat-Shock Proteins - metabolism
Membrane
Messenger RNA
Metabolism
Molecular Sequence Data
Nucleic acids
Nucleoid
Protein Conformation
Ribosome
Ribosomes
RNA
title Coping with the cold: the cold shock response in the Gram-positive soil bacterium Bacillus subtilis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T21%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coping%20with%20the%20cold:%20the%20cold%20shock%20response%20in%20the%20Gram-positive%20soil%20bacterium%20Bacillus%20subtilis&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20B.%20Biological%20sciences&rft.au=Weber,%20Michael%20H.%20W.&rft.date=2002-07-29&rft.volume=357&rft.issue=1423&rft.spage=895&rft.epage=907&rft.pages=895-907&rft.issn=0962-8436&rft.eissn=1471-2970&rft_id=info:doi/10.1098/rstb.2002.1078&rft_dat=%3Cjstor_royal%3E3066908%3C/jstor_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71977011&rft_id=info:pmid/12171653&rft_jstor_id=3066908&rfr_iscdi=true