Chloride-Bicarbonate Exchange in Red Blood Cells: Physiology of Transport and Chemical Modification of Binding Sites

About 80% of the CO$_2$ formed by metabolism is transported from tissues to lungs as bicarbonate ions dissolved in the water phases of red cells and plasma. The catalysed hydration of CO$_2$ to bicarbonate takes place in the erythrocytes but most of the bicarbonate thus formed must be exchanged with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series B, Biological sciences Biological sciences, 1982-12, Vol.299 (1097), p.383-399
Hauptverfasser: Wieth, J. O., Andersen, O. S., Brahm, J., Bjerrum, P. J., Borders, C. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 399
container_issue 1097
container_start_page 383
container_title Philosophical transactions of the Royal Society of London. Series B, Biological sciences
container_volume 299
creator Wieth, J. O.
Andersen, O. S.
Brahm, J.
Bjerrum, P. J.
Borders, C. L.
description About 80% of the CO$_2$ formed by metabolism is transported from tissues to lungs as bicarbonate ions dissolved in the water phases of red cells and plasma. The catalysed hydration of CO$_2$ to bicarbonate takes place in the erythrocytes but most of the bicarbonate thus formed must be exchanged with extracellular chloride to make full use of the carbon dioxide transporting capacity of the blood. The anion transport capacity of the red cell membrane is among the largest ionic transport capacities of any biological membrane. Exchange diffusion of chloride and bicarbonate is nevertheless a rate-limiting step for the transfer of CO$_2$ from tissues to lungs. Measurements of chloride and bicarbonate self-exchange form the basis for calculations that demonstrate that the ionic exchange processes cannot run to complete equilibration at capillary transit times less than about 0.5 s. The anion exchange diffusion is mediated by a large transmembrane protein, constituting almost 30% of the total membrane protein. The kinetics of exchange diffusion must depend on conformational changes of the protein molecule, associated with the binding and subsequent translocation of the transported anion. We have characterized the nature of anion-binding sites facing the extracellular medium by acid-base titration of the transport action and modification of the transport protein in situ with group-specific amino acid reagents. Anion binding and translocation depend on the integrity and the degree of protonation of two sets of exofacial groups with apparent pK values of 12 and 5, respectively. From the chemical reactivities towards amino acid reagents it appears that the groups whose pK = 12 are guanidino groups of arginyl residues, while the groups whose pK = 5 are likely to be carboxylates of glutamic or aspartic acid. Our studies suggest that the characteristics of anion recognition sites in water-soluble proteins and in the integral transport proteins are closely related.
doi_str_mv 10.1098/rstb.1982.0139
format Article
fullrecord <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rstb_1982_0139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2395783</jstor_id><sourcerecordid>2395783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c626t-5d96128d69a1f512943ea5cf3b901a84e5a7988692daa3d8a692e9ec2b2709dd3</originalsourceid><addsrcrecordid>eNp9kktv1DAUhSMEKtPClhVIXrHL4Efi2GwQMyoPqQjUDmvLEzsTjzJ2sB0g_fU4mVFFhejK17rnfsf3yFn2AsElgpy98SFul4gzvISI8EfZAhUVyjGv4ONsATnFOSsIfZqdh7CHEPKyKs6yM4oILEm1yOK67Zw3SucrU0u_dVZGDS5_1620Ow2MBddagVXnnAJr3XXhLfjWjsG4zu1G4Bqw8dKG3vkIpE2SVh8SpwNfnDJNqqJxdpKtjFXG7sCNiTo8y540sgv6-em8yL5_uNysP-VXXz9-Xr-_ymuKacxLxSnCTFEuUVMizAuiZVk3ZMshkqzQpaw4Y5RjJSVRTKZKc13jLa4gV4pcZK-P3N67H4MOURxMqNMW0mo3BMEgpogSlITLo7D2LgSvG9F7c5B-FAiKKWYxxSymmMUUcxp4dSIP24NWd_JTrqlPjn3vxrShq42Oo9i7wdt0_T81PDR1fbNZIU75T8y5SfOVgIwgWGBSUnFr-hk3CUQSCBPCoMUsu2_zr-vLo-s-ROfvVsEk_RVGUvvdsd2aXfvLeC3uvW6G1c5GbePsOzsSRkQzdJ3oVZMI8EGCG_vE-HuW_AHobeGD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>80261631</pqid></control><display><type>article</type><title>Chloride-Bicarbonate Exchange in Red Blood Cells: Physiology of Transport and Chemical Modification of Binding Sites</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Wieth, J. O. ; Andersen, O. S. ; Brahm, J. ; Bjerrum, P. J. ; Borders, C. L.</creator><creatorcontrib>Wieth, J. O. ; Andersen, O. S. ; Brahm, J. ; Bjerrum, P. J. ; Borders, C. L.</creatorcontrib><description>About 80% of the CO$_2$ formed by metabolism is transported from tissues to lungs as bicarbonate ions dissolved in the water phases of red cells and plasma. The catalysed hydration of CO$_2$ to bicarbonate takes place in the erythrocytes but most of the bicarbonate thus formed must be exchanged with extracellular chloride to make full use of the carbon dioxide transporting capacity of the blood. The anion transport capacity of the red cell membrane is among the largest ionic transport capacities of any biological membrane. Exchange diffusion of chloride and bicarbonate is nevertheless a rate-limiting step for the transfer of CO$_2$ from tissues to lungs. Measurements of chloride and bicarbonate self-exchange form the basis for calculations that demonstrate that the ionic exchange processes cannot run to complete equilibration at capillary transit times less than about 0.5 s. The anion exchange diffusion is mediated by a large transmembrane protein, constituting almost 30% of the total membrane protein. The kinetics of exchange diffusion must depend on conformational changes of the protein molecule, associated with the binding and subsequent translocation of the transported anion. We have characterized the nature of anion-binding sites facing the extracellular medium by acid-base titration of the transport action and modification of the transport protein in situ with group-specific amino acid reagents. Anion binding and translocation depend on the integrity and the degree of protonation of two sets of exofacial groups with apparent pK values of 12 and 5, respectively. From the chemical reactivities towards amino acid reagents it appears that the groups whose pK = 12 are guanidino groups of arginyl residues, while the groups whose pK = 5 are likely to be carboxylates of glutamic or aspartic acid. Our studies suggest that the characteristics of anion recognition sites in water-soluble proteins and in the integral transport proteins are closely related.</description><identifier>ISSN: 0962-8436</identifier><identifier>ISSN: 0080-4622</identifier><identifier>EISSN: 1471-2970</identifier><identifier>EISSN: 2054-0280</identifier><identifier>DOI: 10.1098/rstb.1982.0139</identifier><identifier>PMID: 6130537</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Amino Acids, Dicarboxylic ; Anion Exchange Protein 1, Erythrocyte ; Anions ; Bicarbonates ; Bicarbonates - blood ; Binding Sites ; Biological Transport - drug effects ; Blood ; Blood plasma ; Blood Proteins - physiology ; Capillaries ; Carbon Dioxide - blood ; Carbon Dioxide - metabolism ; Cell membranes ; Chlorides ; Chlorides - blood ; Erythrocyte membrane ; Erythrocyte Membrane - metabolism ; Erythrocytes ; Erythrocytes - metabolism ; Humans ; Kinetics ; Molecules ; Phenylglyoxal - pharmacology ; Physiology of Anions</subject><ispartof>Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 1982-12, Vol.299 (1097), p.383-399</ispartof><rights>Copyright 1982 The Royal Society</rights><rights>Scanned images copyright © 2017, Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c626t-5d96128d69a1f512943ea5cf3b901a84e5a7988692daa3d8a692e9ec2b2709dd3</citedby><cites>FETCH-LOGICAL-c626t-5d96128d69a1f512943ea5cf3b901a84e5a7988692daa3d8a692e9ec2b2709dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2395783$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2395783$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/6130537$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wieth, J. O.</creatorcontrib><creatorcontrib>Andersen, O. S.</creatorcontrib><creatorcontrib>Brahm, J.</creatorcontrib><creatorcontrib>Bjerrum, P. J.</creatorcontrib><creatorcontrib>Borders, C. L.</creatorcontrib><title>Chloride-Bicarbonate Exchange in Red Blood Cells: Physiology of Transport and Chemical Modification of Binding Sites</title><title>Philosophical transactions of the Royal Society of London. Series B, Biological sciences</title><addtitle>Phil. Trans. R. Soc. Lond. B</addtitle><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><description>About 80% of the CO$_2$ formed by metabolism is transported from tissues to lungs as bicarbonate ions dissolved in the water phases of red cells and plasma. The catalysed hydration of CO$_2$ to bicarbonate takes place in the erythrocytes but most of the bicarbonate thus formed must be exchanged with extracellular chloride to make full use of the carbon dioxide transporting capacity of the blood. The anion transport capacity of the red cell membrane is among the largest ionic transport capacities of any biological membrane. Exchange diffusion of chloride and bicarbonate is nevertheless a rate-limiting step for the transfer of CO$_2$ from tissues to lungs. Measurements of chloride and bicarbonate self-exchange form the basis for calculations that demonstrate that the ionic exchange processes cannot run to complete equilibration at capillary transit times less than about 0.5 s. The anion exchange diffusion is mediated by a large transmembrane protein, constituting almost 30% of the total membrane protein. The kinetics of exchange diffusion must depend on conformational changes of the protein molecule, associated with the binding and subsequent translocation of the transported anion. We have characterized the nature of anion-binding sites facing the extracellular medium by acid-base titration of the transport action and modification of the transport protein in situ with group-specific amino acid reagents. Anion binding and translocation depend on the integrity and the degree of protonation of two sets of exofacial groups with apparent pK values of 12 and 5, respectively. From the chemical reactivities towards amino acid reagents it appears that the groups whose pK = 12 are guanidino groups of arginyl residues, while the groups whose pK = 5 are likely to be carboxylates of glutamic or aspartic acid. Our studies suggest that the characteristics of anion recognition sites in water-soluble proteins and in the integral transport proteins are closely related.</description><subject>Amino Acids, Dicarboxylic</subject><subject>Anion Exchange Protein 1, Erythrocyte</subject><subject>Anions</subject><subject>Bicarbonates</subject><subject>Bicarbonates - blood</subject><subject>Binding Sites</subject><subject>Biological Transport - drug effects</subject><subject>Blood</subject><subject>Blood plasma</subject><subject>Blood Proteins - physiology</subject><subject>Capillaries</subject><subject>Carbon Dioxide - blood</subject><subject>Carbon Dioxide - metabolism</subject><subject>Cell membranes</subject><subject>Chlorides</subject><subject>Chlorides - blood</subject><subject>Erythrocyte membrane</subject><subject>Erythrocyte Membrane - metabolism</subject><subject>Erythrocytes</subject><subject>Erythrocytes - metabolism</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Molecules</subject><subject>Phenylglyoxal - pharmacology</subject><subject>Physiology of Anions</subject><issn>0962-8436</issn><issn>0080-4622</issn><issn>1471-2970</issn><issn>2054-0280</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kktv1DAUhSMEKtPClhVIXrHL4Efi2GwQMyoPqQjUDmvLEzsTjzJ2sB0g_fU4mVFFhejK17rnfsf3yFn2AsElgpy98SFul4gzvISI8EfZAhUVyjGv4ONsATnFOSsIfZqdh7CHEPKyKs6yM4oILEm1yOK67Zw3SucrU0u_dVZGDS5_1620Ow2MBddagVXnnAJr3XXhLfjWjsG4zu1G4Bqw8dKG3vkIpE2SVh8SpwNfnDJNqqJxdpKtjFXG7sCNiTo8y540sgv6-em8yL5_uNysP-VXXz9-Xr-_ymuKacxLxSnCTFEuUVMizAuiZVk3ZMshkqzQpaw4Y5RjJSVRTKZKc13jLa4gV4pcZK-P3N67H4MOURxMqNMW0mo3BMEgpogSlITLo7D2LgSvG9F7c5B-FAiKKWYxxSymmMUUcxp4dSIP24NWd_JTrqlPjn3vxrShq42Oo9i7wdt0_T81PDR1fbNZIU75T8y5SfOVgIwgWGBSUnFr-hk3CUQSCBPCoMUsu2_zr-vLo-s-ROfvVsEk_RVGUvvdsd2aXfvLeC3uvW6G1c5GbePsOzsSRkQzdJ3oVZMI8EGCG_vE-HuW_AHobeGD</recordid><startdate>19821201</startdate><enddate>19821201</enddate><creator>Wieth, J. O.</creator><creator>Andersen, O. S.</creator><creator>Brahm, J.</creator><creator>Bjerrum, P. J.</creator><creator>Borders, C. L.</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19821201</creationdate><title>Chloride-Bicarbonate Exchange in Red Blood Cells: Physiology of Transport and Chemical Modification of Binding Sites</title><author>Wieth, J. O. ; Andersen, O. S. ; Brahm, J. ; Bjerrum, P. J. ; Borders, C. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c626t-5d96128d69a1f512943ea5cf3b901a84e5a7988692daa3d8a692e9ec2b2709dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><topic>Amino Acids, Dicarboxylic</topic><topic>Anion Exchange Protein 1, Erythrocyte</topic><topic>Anions</topic><topic>Bicarbonates</topic><topic>Bicarbonates - blood</topic><topic>Binding Sites</topic><topic>Biological Transport - drug effects</topic><topic>Blood</topic><topic>Blood plasma</topic><topic>Blood Proteins - physiology</topic><topic>Capillaries</topic><topic>Carbon Dioxide - blood</topic><topic>Carbon Dioxide - metabolism</topic><topic>Cell membranes</topic><topic>Chlorides</topic><topic>Chlorides - blood</topic><topic>Erythrocyte membrane</topic><topic>Erythrocyte Membrane - metabolism</topic><topic>Erythrocytes</topic><topic>Erythrocytes - metabolism</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Molecules</topic><topic>Phenylglyoxal - pharmacology</topic><topic>Physiology of Anions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wieth, J. O.</creatorcontrib><creatorcontrib>Andersen, O. S.</creatorcontrib><creatorcontrib>Brahm, J.</creatorcontrib><creatorcontrib>Bjerrum, P. J.</creatorcontrib><creatorcontrib>Borders, C. L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wieth, J. O.</au><au>Andersen, O. S.</au><au>Brahm, J.</au><au>Bjerrum, P. J.</au><au>Borders, C. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chloride-Bicarbonate Exchange in Red Blood Cells: Physiology of Transport and Chemical Modification of Binding Sites</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series B, Biological sciences</jtitle><stitle>Phil. Trans. R. Soc. Lond. B</stitle><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><date>1982-12-01</date><risdate>1982</risdate><volume>299</volume><issue>1097</issue><spage>383</spage><epage>399</epage><pages>383-399</pages><issn>0962-8436</issn><issn>0080-4622</issn><eissn>1471-2970</eissn><eissn>2054-0280</eissn><abstract>About 80% of the CO$_2$ formed by metabolism is transported from tissues to lungs as bicarbonate ions dissolved in the water phases of red cells and plasma. The catalysed hydration of CO$_2$ to bicarbonate takes place in the erythrocytes but most of the bicarbonate thus formed must be exchanged with extracellular chloride to make full use of the carbon dioxide transporting capacity of the blood. The anion transport capacity of the red cell membrane is among the largest ionic transport capacities of any biological membrane. Exchange diffusion of chloride and bicarbonate is nevertheless a rate-limiting step for the transfer of CO$_2$ from tissues to lungs. Measurements of chloride and bicarbonate self-exchange form the basis for calculations that demonstrate that the ionic exchange processes cannot run to complete equilibration at capillary transit times less than about 0.5 s. The anion exchange diffusion is mediated by a large transmembrane protein, constituting almost 30% of the total membrane protein. The kinetics of exchange diffusion must depend on conformational changes of the protein molecule, associated with the binding and subsequent translocation of the transported anion. We have characterized the nature of anion-binding sites facing the extracellular medium by acid-base titration of the transport action and modification of the transport protein in situ with group-specific amino acid reagents. Anion binding and translocation depend on the integrity and the degree of protonation of two sets of exofacial groups with apparent pK values of 12 and 5, respectively. From the chemical reactivities towards amino acid reagents it appears that the groups whose pK = 12 are guanidino groups of arginyl residues, while the groups whose pK = 5 are likely to be carboxylates of glutamic or aspartic acid. Our studies suggest that the characteristics of anion recognition sites in water-soluble proteins and in the integral transport proteins are closely related.</abstract><cop>London</cop><pub>The Royal Society</pub><pmid>6130537</pmid><doi>10.1098/rstb.1982.0139</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-8436
ispartof Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 1982-12, Vol.299 (1097), p.383-399
issn 0962-8436
0080-4622
1471-2970
2054-0280
language eng
recordid cdi_royalsociety_journals_10_1098_rstb_1982_0139
source Jstor Complete Legacy; MEDLINE
subjects Amino Acids, Dicarboxylic
Anion Exchange Protein 1, Erythrocyte
Anions
Bicarbonates
Bicarbonates - blood
Binding Sites
Biological Transport - drug effects
Blood
Blood plasma
Blood Proteins - physiology
Capillaries
Carbon Dioxide - blood
Carbon Dioxide - metabolism
Cell membranes
Chlorides
Chlorides - blood
Erythrocyte membrane
Erythrocyte Membrane - metabolism
Erythrocytes
Erythrocytes - metabolism
Humans
Kinetics
Molecules
Phenylglyoxal - pharmacology
Physiology of Anions
title Chloride-Bicarbonate Exchange in Red Blood Cells: Physiology of Transport and Chemical Modification of Binding Sites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chloride-Bicarbonate%20Exchange%20in%20Red%20Blood%20Cells:%20Physiology%20of%20Transport%20and%20Chemical%20Modification%20of%20Binding%20Sites&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20B,%20Biological%20sciences&rft.au=Wieth,%20J.%20O.&rft.date=1982-12-01&rft.volume=299&rft.issue=1097&rft.spage=383&rft.epage=399&rft.pages=383-399&rft.issn=0962-8436&rft.eissn=1471-2970&rft_id=info:doi/10.1098/rstb.1982.0139&rft_dat=%3Cjstor_royal%3E2395783%3C/jstor_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=80261631&rft_id=info:pmid/6130537&rft_jstor_id=2395783&rfr_iscdi=true