Defect characterization in graphene and carbon nanotubes using Raman spectroscopy

This review discusses advances that have been made in the study of defect-induced double-resonance processes in nanographite, graphene and carbon nanotubes, mostly coming from combining Raman spectroscopic experiments with microscopy studies and from the development of new theoretical models. The di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2010-12, Vol.368 (1932), p.5355-5377
Hauptverfasser: Dresselhaus, M. S., Jorio, A., Filho, A. G. Souza, Saito, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5377
container_issue 1932
container_start_page 5355
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 368
creator Dresselhaus, M. S.
Jorio, A.
Filho, A. G. Souza
Saito, R.
description This review discusses advances that have been made in the study of defect-induced double-resonance processes in nanographite, graphene and carbon nanotubes, mostly coming from combining Raman spectroscopic experiments with microscopy studies and from the development of new theoretical models. The disorder-induced peak frequencies and intensities are discussed, with particular emphasis given to how the disorder-induced features evolve with increasing amounts of disorder. We address here two systems, ion-bombarded graphene and nanographite, where disorder is represented by point defects and boundaries, respectively. Raman spectroscopy is used to study the 'atomic structure' of the defect, making it possible, for example, to distinguish between zigzag and armchair edges, based on selection rules of phonon scattering. Finally, a different concept is discussed, involving the effect that defects have on the lineshape of Raman-allowed peaks, owing to local electron and phonon energy renormalization. Such effects can be observed by near-field optical measurements on the G′ feature for doped single-walled carbon nanotubes.
doi_str_mv 10.1098/rsta.2010.0213
format Article
fullrecord <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rsta_2010_0213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25753481</jstor_id><sourcerecordid>25753481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-494f2667a6476cf6ba598656d4d4f5f159e647fdce8ab01b4e1644841adc602f3</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi0EoqVw5QbKjVO2Hn8lPlYtX1KlilIkbpbj2K2XXTvYDtL21-MlBYRQe5oZzzPveF6EXgJeAZb9ccpFrwiuJSZAH6FDYB20RAryuOZUsJZj-vUAPct5jTGA4OQpOiCAGRDoD9GnM-usKY250UmbYpO_1cXH0PjQXCc93dhgGx3Gxug01OegQyzzYHMzZx-um0u91aHJU9VIMZs47Z6jJ05vsn1xF4_Ql3dvr04_tOcX7z-enpy3hhNRWiaZI0J0WrBOGCcGzWUvuBjZyBx3wKWtHTca2-sBw8AsCMZ6Bno0AhNHj9CbRXdK8ftsc1Fbn43dbHSwcc6qE4T0VEqo5GohTf1iTtapKfmtTjsFWO1dVHsX1d5FtXexDry-k56HrR3_4L9tqwBdgBR39cZovC07tY5zCrW8X_bbQ1OXn69OflDRe5CUKNxTwAJLgtWtnxap2lQ-59mqX8i_8v9ve7VsW-cS098beMcp64H-BOfLrGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>762283991</pqid></control><display><type>article</type><title>Defect characterization in graphene and carbon nanotubes using Raman spectroscopy</title><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Dresselhaus, M. S. ; Jorio, A. ; Filho, A. G. Souza ; Saito, R.</creator><creatorcontrib>Dresselhaus, M. S. ; Jorio, A. ; Filho, A. G. Souza ; Saito, R.</creatorcontrib><description>This review discusses advances that have been made in the study of defect-induced double-resonance processes in nanographite, graphene and carbon nanotubes, mostly coming from combining Raman spectroscopic experiments with microscopy studies and from the development of new theoretical models. The disorder-induced peak frequencies and intensities are discussed, with particular emphasis given to how the disorder-induced features evolve with increasing amounts of disorder. We address here two systems, ion-bombarded graphene and nanographite, where disorder is represented by point defects and boundaries, respectively. Raman spectroscopy is used to study the 'atomic structure' of the defect, making it possible, for example, to distinguish between zigzag and armchair edges, based on selection rules of phonon scattering. Finally, a different concept is discussed, involving the effect that defects have on the lineshape of Raman-allowed peaks, owing to local electron and phonon energy renormalization. Such effects can be observed by near-field optical measurements on the G′ feature for doped single-walled carbon nanotubes.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2010.0213</identifier><identifier>PMID: 21041218</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Armchairs ; Carbon ; Carbon Nanotubes ; Crystallites ; Defects ; Graphene ; Graphite ; Lasers ; Nanographite ; Phonons ; Raman scattering ; Raman Spectroscopy ; Review</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2010-12, Vol.368 (1932), p.5355-5377</ispartof><rights>COPYRIGHT © 2010 The Royal Society</rights><rights>This journal is © 2010 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-494f2667a6476cf6ba598656d4d4f5f159e647fdce8ab01b4e1644841adc602f3</citedby><cites>FETCH-LOGICAL-c526t-494f2667a6476cf6ba598656d4d4f5f159e647fdce8ab01b4e1644841adc602f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25753481$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25753481$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,828,27901,27902,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21041218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dresselhaus, M. S.</creatorcontrib><creatorcontrib>Jorio, A.</creatorcontrib><creatorcontrib>Filho, A. G. Souza</creatorcontrib><creatorcontrib>Saito, R.</creatorcontrib><title>Defect characterization in graphene and carbon nanotubes using Raman spectroscopy</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><description>This review discusses advances that have been made in the study of defect-induced double-resonance processes in nanographite, graphene and carbon nanotubes, mostly coming from combining Raman spectroscopic experiments with microscopy studies and from the development of new theoretical models. The disorder-induced peak frequencies and intensities are discussed, with particular emphasis given to how the disorder-induced features evolve with increasing amounts of disorder. We address here two systems, ion-bombarded graphene and nanographite, where disorder is represented by point defects and boundaries, respectively. Raman spectroscopy is used to study the 'atomic structure' of the defect, making it possible, for example, to distinguish between zigzag and armchair edges, based on selection rules of phonon scattering. Finally, a different concept is discussed, involving the effect that defects have on the lineshape of Raman-allowed peaks, owing to local electron and phonon energy renormalization. Such effects can be observed by near-field optical measurements on the G′ feature for doped single-walled carbon nanotubes.</description><subject>Armchairs</subject><subject>Carbon</subject><subject>Carbon Nanotubes</subject><subject>Crystallites</subject><subject>Defects</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Lasers</subject><subject>Nanographite</subject><subject>Phonons</subject><subject>Raman scattering</subject><subject>Raman Spectroscopy</subject><subject>Review</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v1DAQhi0EoqVw5QbKjVO2Hn8lPlYtX1KlilIkbpbj2K2XXTvYDtL21-MlBYRQe5oZzzPveF6EXgJeAZb9ccpFrwiuJSZAH6FDYB20RAryuOZUsJZj-vUAPct5jTGA4OQpOiCAGRDoD9GnM-usKY250UmbYpO_1cXH0PjQXCc93dhgGx3Gxug01OegQyzzYHMzZx-um0u91aHJU9VIMZs47Z6jJ05vsn1xF4_Ql3dvr04_tOcX7z-enpy3hhNRWiaZI0J0WrBOGCcGzWUvuBjZyBx3wKWtHTca2-sBw8AsCMZ6Bno0AhNHj9CbRXdK8ftsc1Fbn43dbHSwcc6qE4T0VEqo5GohTf1iTtapKfmtTjsFWO1dVHsX1d5FtXexDry-k56HrR3_4L9tqwBdgBR39cZovC07tY5zCrW8X_bbQ1OXn69OflDRe5CUKNxTwAJLgtWtnxap2lQ-59mqX8i_8v9ve7VsW-cS098beMcp64H-BOfLrGA</recordid><startdate>20101213</startdate><enddate>20101213</enddate><creator>Dresselhaus, M. S.</creator><creator>Jorio, A.</creator><creator>Filho, A. G. Souza</creator><creator>Saito, R.</creator><general>The Royal Society</general><general>The Royal Society Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20101213</creationdate><title>Defect characterization in graphene and carbon nanotubes using Raman spectroscopy</title><author>Dresselhaus, M. S. ; Jorio, A. ; Filho, A. G. Souza ; Saito, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-494f2667a6476cf6ba598656d4d4f5f159e647fdce8ab01b4e1644841adc602f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Armchairs</topic><topic>Carbon</topic><topic>Carbon Nanotubes</topic><topic>Crystallites</topic><topic>Defects</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Lasers</topic><topic>Nanographite</topic><topic>Phonons</topic><topic>Raman scattering</topic><topic>Raman Spectroscopy</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dresselhaus, M. S.</creatorcontrib><creatorcontrib>Jorio, A.</creatorcontrib><creatorcontrib>Filho, A. G. Souza</creatorcontrib><creatorcontrib>Saito, R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dresselhaus, M. S.</au><au>Jorio, A.</au><au>Filho, A. G. Souza</au><au>Saito, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect characterization in graphene and carbon nanotubes using Raman spectroscopy</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><date>2010-12-13</date><risdate>2010</risdate><volume>368</volume><issue>1932</issue><spage>5355</spage><epage>5377</epage><pages>5355-5377</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>This review discusses advances that have been made in the study of defect-induced double-resonance processes in nanographite, graphene and carbon nanotubes, mostly coming from combining Raman spectroscopic experiments with microscopy studies and from the development of new theoretical models. The disorder-induced peak frequencies and intensities are discussed, with particular emphasis given to how the disorder-induced features evolve with increasing amounts of disorder. We address here two systems, ion-bombarded graphene and nanographite, where disorder is represented by point defects and boundaries, respectively. Raman spectroscopy is used to study the 'atomic structure' of the defect, making it possible, for example, to distinguish between zigzag and armchair edges, based on selection rules of phonon scattering. Finally, a different concept is discussed, involving the effect that defects have on the lineshape of Raman-allowed peaks, owing to local electron and phonon energy renormalization. Such effects can be observed by near-field optical measurements on the G′ feature for doped single-walled carbon nanotubes.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>21041218</pmid><doi>10.1098/rsta.2010.0213</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2010-12, Vol.368 (1932), p.5355-5377
issn 1364-503X
1471-2962
language eng
recordid cdi_royalsociety_journals_10_1098_rsta_2010_0213
source Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR Mathematics & Statistics
subjects Armchairs
Carbon
Carbon Nanotubes
Crystallites
Defects
Graphene
Graphite
Lasers
Nanographite
Phonons
Raman scattering
Raman Spectroscopy
Review
title Defect characterization in graphene and carbon nanotubes using Raman spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A22%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20characterization%20in%20graphene%20and%20carbon%20nanotubes%20using%20Raman%20spectroscopy&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Dresselhaus,%20M.%20S.&rft.date=2010-12-13&rft.volume=368&rft.issue=1932&rft.spage=5355&rft.epage=5377&rft.pages=5355-5377&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2010.0213&rft_dat=%3Cjstor_royal%3E25753481%3C/jstor_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=762283991&rft_id=info:pmid/21041218&rft_jstor_id=25753481&rfr_iscdi=true