Defect characterization in graphene and carbon nanotubes using Raman spectroscopy
This review discusses advances that have been made in the study of defect-induced double-resonance processes in nanographite, graphene and carbon nanotubes, mostly coming from combining Raman spectroscopic experiments with microscopy studies and from the development of new theoretical models. The di...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2010-12, Vol.368 (1932), p.5355-5377 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5377 |
---|---|
container_issue | 1932 |
container_start_page | 5355 |
container_title | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
container_volume | 368 |
creator | Dresselhaus, M. S. Jorio, A. Filho, A. G. Souza Saito, R. |
description | This review discusses advances that have been made in the study of defect-induced double-resonance processes in nanographite, graphene and carbon nanotubes, mostly coming from combining Raman spectroscopic experiments with microscopy studies and from the development of new theoretical models. The disorder-induced peak frequencies and intensities are discussed, with particular emphasis given to how the disorder-induced features evolve with increasing amounts of disorder. We address here two systems, ion-bombarded graphene and nanographite, where disorder is represented by point defects and boundaries, respectively. Raman spectroscopy is used to study the 'atomic structure' of the defect, making it possible, for example, to distinguish between zigzag and armchair edges, based on selection rules of phonon scattering. Finally, a different concept is discussed, involving the effect that defects have on the lineshape of Raman-allowed peaks, owing to local electron and phonon energy renormalization. Such effects can be observed by near-field optical measurements on the G′ feature for doped single-walled carbon nanotubes. |
doi_str_mv | 10.1098/rsta.2010.0213 |
format | Article |
fullrecord | <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rsta_2010_0213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25753481</jstor_id><sourcerecordid>25753481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-494f2667a6476cf6ba598656d4d4f5f159e647fdce8ab01b4e1644841adc602f3</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi0EoqVw5QbKjVO2Hn8lPlYtX1KlilIkbpbj2K2XXTvYDtL21-MlBYRQe5oZzzPveF6EXgJeAZb9ccpFrwiuJSZAH6FDYB20RAryuOZUsJZj-vUAPct5jTGA4OQpOiCAGRDoD9GnM-usKY250UmbYpO_1cXH0PjQXCc93dhgGx3Gxug01OegQyzzYHMzZx-um0u91aHJU9VIMZs47Z6jJ05vsn1xF4_Ql3dvr04_tOcX7z-enpy3hhNRWiaZI0J0WrBOGCcGzWUvuBjZyBx3wKWtHTca2-sBw8AsCMZ6Bno0AhNHj9CbRXdK8ftsc1Fbn43dbHSwcc6qE4T0VEqo5GohTf1iTtapKfmtTjsFWO1dVHsX1d5FtXexDry-k56HrR3_4L9tqwBdgBR39cZovC07tY5zCrW8X_bbQ1OXn69OflDRe5CUKNxTwAJLgtWtnxap2lQ-59mqX8i_8v9ve7VsW-cS098beMcp64H-BOfLrGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>762283991</pqid></control><display><type>article</type><title>Defect characterization in graphene and carbon nanotubes using Raman spectroscopy</title><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR Mathematics & Statistics</source><creator>Dresselhaus, M. S. ; Jorio, A. ; Filho, A. G. Souza ; Saito, R.</creator><creatorcontrib>Dresselhaus, M. S. ; Jorio, A. ; Filho, A. G. Souza ; Saito, R.</creatorcontrib><description>This review discusses advances that have been made in the study of defect-induced double-resonance processes in nanographite, graphene and carbon nanotubes, mostly coming from combining Raman spectroscopic experiments with microscopy studies and from the development of new theoretical models. The disorder-induced peak frequencies and intensities are discussed, with particular emphasis given to how the disorder-induced features evolve with increasing amounts of disorder. We address here two systems, ion-bombarded graphene and nanographite, where disorder is represented by point defects and boundaries, respectively. Raman spectroscopy is used to study the 'atomic structure' of the defect, making it possible, for example, to distinguish between zigzag and armchair edges, based on selection rules of phonon scattering. Finally, a different concept is discussed, involving the effect that defects have on the lineshape of Raman-allowed peaks, owing to local electron and phonon energy renormalization. Such effects can be observed by near-field optical measurements on the G′ feature for doped single-walled carbon nanotubes.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2010.0213</identifier><identifier>PMID: 21041218</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Armchairs ; Carbon ; Carbon Nanotubes ; Crystallites ; Defects ; Graphene ; Graphite ; Lasers ; Nanographite ; Phonons ; Raman scattering ; Raman Spectroscopy ; Review</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2010-12, Vol.368 (1932), p.5355-5377</ispartof><rights>COPYRIGHT © 2010 The Royal Society</rights><rights>This journal is © 2010 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-494f2667a6476cf6ba598656d4d4f5f159e647fdce8ab01b4e1644841adc602f3</citedby><cites>FETCH-LOGICAL-c526t-494f2667a6476cf6ba598656d4d4f5f159e647fdce8ab01b4e1644841adc602f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25753481$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25753481$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,828,27901,27902,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21041218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dresselhaus, M. S.</creatorcontrib><creatorcontrib>Jorio, A.</creatorcontrib><creatorcontrib>Filho, A. G. Souza</creatorcontrib><creatorcontrib>Saito, R.</creatorcontrib><title>Defect characterization in graphene and carbon nanotubes using Raman spectroscopy</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><description>This review discusses advances that have been made in the study of defect-induced double-resonance processes in nanographite, graphene and carbon nanotubes, mostly coming from combining Raman spectroscopic experiments with microscopy studies and from the development of new theoretical models. The disorder-induced peak frequencies and intensities are discussed, with particular emphasis given to how the disorder-induced features evolve with increasing amounts of disorder. We address here two systems, ion-bombarded graphene and nanographite, where disorder is represented by point defects and boundaries, respectively. Raman spectroscopy is used to study the 'atomic structure' of the defect, making it possible, for example, to distinguish between zigzag and armchair edges, based on selection rules of phonon scattering. Finally, a different concept is discussed, involving the effect that defects have on the lineshape of Raman-allowed peaks, owing to local electron and phonon energy renormalization. Such effects can be observed by near-field optical measurements on the G′ feature for doped single-walled carbon nanotubes.</description><subject>Armchairs</subject><subject>Carbon</subject><subject>Carbon Nanotubes</subject><subject>Crystallites</subject><subject>Defects</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Lasers</subject><subject>Nanographite</subject><subject>Phonons</subject><subject>Raman scattering</subject><subject>Raman Spectroscopy</subject><subject>Review</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v1DAQhi0EoqVw5QbKjVO2Hn8lPlYtX1KlilIkbpbj2K2XXTvYDtL21-MlBYRQe5oZzzPveF6EXgJeAZb9ccpFrwiuJSZAH6FDYB20RAryuOZUsJZj-vUAPct5jTGA4OQpOiCAGRDoD9GnM-usKY250UmbYpO_1cXH0PjQXCc93dhgGx3Gxug01OegQyzzYHMzZx-um0u91aHJU9VIMZs47Z6jJ05vsn1xF4_Ql3dvr04_tOcX7z-enpy3hhNRWiaZI0J0WrBOGCcGzWUvuBjZyBx3wKWtHTca2-sBw8AsCMZ6Bno0AhNHj9CbRXdK8ftsc1Fbn43dbHSwcc6qE4T0VEqo5GohTf1iTtapKfmtTjsFWO1dVHsX1d5FtXexDry-k56HrR3_4L9tqwBdgBR39cZovC07tY5zCrW8X_bbQ1OXn69OflDRe5CUKNxTwAJLgtWtnxap2lQ-59mqX8i_8v9ve7VsW-cS098beMcp64H-BOfLrGA</recordid><startdate>20101213</startdate><enddate>20101213</enddate><creator>Dresselhaus, M. S.</creator><creator>Jorio, A.</creator><creator>Filho, A. G. Souza</creator><creator>Saito, R.</creator><general>The Royal Society</general><general>The Royal Society Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20101213</creationdate><title>Defect characterization in graphene and carbon nanotubes using Raman spectroscopy</title><author>Dresselhaus, M. S. ; Jorio, A. ; Filho, A. G. Souza ; Saito, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-494f2667a6476cf6ba598656d4d4f5f159e647fdce8ab01b4e1644841adc602f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Armchairs</topic><topic>Carbon</topic><topic>Carbon Nanotubes</topic><topic>Crystallites</topic><topic>Defects</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Lasers</topic><topic>Nanographite</topic><topic>Phonons</topic><topic>Raman scattering</topic><topic>Raman Spectroscopy</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dresselhaus, M. S.</creatorcontrib><creatorcontrib>Jorio, A.</creatorcontrib><creatorcontrib>Filho, A. G. Souza</creatorcontrib><creatorcontrib>Saito, R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dresselhaus, M. S.</au><au>Jorio, A.</au><au>Filho, A. G. Souza</au><au>Saito, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect characterization in graphene and carbon nanotubes using Raman spectroscopy</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><date>2010-12-13</date><risdate>2010</risdate><volume>368</volume><issue>1932</issue><spage>5355</spage><epage>5377</epage><pages>5355-5377</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>This review discusses advances that have been made in the study of defect-induced double-resonance processes in nanographite, graphene and carbon nanotubes, mostly coming from combining Raman spectroscopic experiments with microscopy studies and from the development of new theoretical models. The disorder-induced peak frequencies and intensities are discussed, with particular emphasis given to how the disorder-induced features evolve with increasing amounts of disorder. We address here two systems, ion-bombarded graphene and nanographite, where disorder is represented by point defects and boundaries, respectively. Raman spectroscopy is used to study the 'atomic structure' of the defect, making it possible, for example, to distinguish between zigzag and armchair edges, based on selection rules of phonon scattering. Finally, a different concept is discussed, involving the effect that defects have on the lineshape of Raman-allowed peaks, owing to local electron and phonon energy renormalization. Such effects can be observed by near-field optical measurements on the G′ feature for doped single-walled carbon nanotubes.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>21041218</pmid><doi>10.1098/rsta.2010.0213</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-503X |
ispartof | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2010-12, Vol.368 (1932), p.5355-5377 |
issn | 1364-503X 1471-2962 |
language | eng |
recordid | cdi_royalsociety_journals_10_1098_rsta_2010_0213 |
source | Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR Mathematics & Statistics |
subjects | Armchairs Carbon Carbon Nanotubes Crystallites Defects Graphene Graphite Lasers Nanographite Phonons Raman scattering Raman Spectroscopy Review |
title | Defect characterization in graphene and carbon nanotubes using Raman spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A22%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20characterization%20in%20graphene%20and%20carbon%20nanotubes%20using%20Raman%20spectroscopy&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Dresselhaus,%20M.%20S.&rft.date=2010-12-13&rft.volume=368&rft.issue=1932&rft.spage=5355&rft.epage=5377&rft.pages=5355-5377&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2010.0213&rft_dat=%3Cjstor_royal%3E25753481%3C/jstor_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=762283991&rft_id=info:pmid/21041218&rft_jstor_id=25753481&rfr_iscdi=true |