An applied mathematics perspective on stochastic modelling for climate
Systematic strategies from applied mathematics for stochastic modelling in climate are reviewed here. One of the topics discussed is the stochastic modelling of mid-latitude low-frequency variability through a few teleconnection patterns, including the central role and physical mechanisms responsibl...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2008-07, Vol.366 (1875), p.2427-2453 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2453 |
---|---|
container_issue | 1875 |
container_start_page | 2427 |
container_title | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
container_volume | 366 |
creator | Majda, Andrew J Franzke, Christian Khouider, Boualem |
description | Systematic strategies from applied mathematics for stochastic modelling in climate are reviewed here. One of the topics discussed is the stochastic modelling of mid-latitude low-frequency variability through a few teleconnection patterns, including the central role and physical mechanisms responsible for multiplicative noise. A new low-dimensional stochastic model is developed here, which mimics key features of atmospheric general circulation models, to test the fidelity of stochastic mode reduction procedures. The second topic discussed here is the systematic design of stochastic lattice models to capture irregular and highly intermittent features that are not resolved by a deterministic parametrization. A recent applied mathematics design principle for stochastic column modelling with intermittency is illustrated in an idealized setting for deep tropical convection; the practical effect of this stochastic model in both slowing down convectively coupled waves and increasing their fluctuations is presented here. |
doi_str_mv | 10.1098/rsta.2008.0012 |
format | Article |
fullrecord | <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rsta_2008_0012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25190848</jstor_id><sourcerecordid>25190848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c596t-70b9ad15f8a5289685ba85f8278c86bcecdd1c5d914041b9ae7bbaa3d211cff33</originalsourceid><addsrcrecordid>eNp9UcFu1DAUjBCIlsKVGygnbln8nNhxbqwWCohKSKVAb5bjOF1vs3GwncLy9bw0q6IVopc4TzPjNzNOkudAFkAq8dqHqBaUELEgBOiD5BiKEjJacfoQ_3NeZIzkl0fJkxA2yADO6OPkCERRMFbS4-R02adqGDprmnSr4trgx-qQDsaHwehob0zq-jREp9cqIJRuXWO6zvZXaet8qjuLCvM0edSqLphn-_Mk-Xr67mL1ITv7_P7janmWaVbxmJWkrlQDrBWKUVFxwWolcKKl0ILX2uimAc2aCgpSAHJNWddK5Q0F0G2b5yfJq_newbsfowlRbm3Q6Ef1xo1BlsB5QXmJxMVM1N6F4E0rB49O_U4CkVNzcmpOTs3JqTkUvNzfPNZb0_yl76tCwvVM8G6HEZ22Ju7kxo2-x1Gef7lY3uScWxAlk0TkQEpglMvfdph3IShtCKORt5TD_f_aye_b9t8QL2bVBh_M32WgDCoiCoF4NuM2RPPrDlf-WmJnaOqbKORb9qlaifNL-R35MPPX9mr903ojD-zgMOyD3UaiBZ2af3OvZnKsXR9NHw-Vsh27Tg5Nm_8B7gzgrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71664267</pqid></control><display><type>article</type><title>An applied mathematics perspective on stochastic modelling for climate</title><source>JSTOR Mathematics & Statistics</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Majda, Andrew J ; Franzke, Christian ; Khouider, Boualem</creator><creatorcontrib>Majda, Andrew J ; Franzke, Christian ; Khouider, Boualem</creatorcontrib><description>Systematic strategies from applied mathematics for stochastic modelling in climate are reviewed here. One of the topics discussed is the stochastic modelling of mid-latitude low-frequency variability through a few teleconnection patterns, including the central role and physical mechanisms responsible for multiplicative noise. A new low-dimensional stochastic model is developed here, which mimics key features of atmospheric general circulation models, to test the fidelity of stochastic mode reduction procedures. The second topic discussed here is the systematic design of stochastic lattice models to capture irregular and highly intermittent features that are not resolved by a deterministic parametrization. A recent applied mathematics design principle for stochastic column modelling with intermittency is illustrated in an idealized setting for deep tropical convection; the practical effect of this stochastic model in both slowing down convectively coupled waves and increasing their fluctuations is presented here.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2008.0012</identifier><identifier>PMID: 18445572</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Applied mathematics ; Atmospheric models ; Climate models ; Convection ; Determinism ; Intermittency ; Low-Frequency Variability ; Mathematical lattices ; Mathematical models ; Modeling ; Multiplicative Noise ; Parametric models ; Stochastic models ; Tropical Convection</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2008-07, Vol.366 (1875), p.2427-2453</ispartof><rights>Copyright 2008 The Royal Society</rights><rights>2008 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c596t-70b9ad15f8a5289685ba85f8278c86bcecdd1c5d914041b9ae7bbaa3d211cff33</citedby><cites>FETCH-LOGICAL-c596t-70b9ad15f8a5289685ba85f8278c86bcecdd1c5d914041b9ae7bbaa3d211cff33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25190848$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25190848$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,832,27924,27925,58021,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18445572$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Majda, Andrew J</creatorcontrib><creatorcontrib>Franzke, Christian</creatorcontrib><creatorcontrib>Khouider, Boualem</creatorcontrib><title>An applied mathematics perspective on stochastic modelling for climate</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>PHIL TRANS R SOC A</addtitle><description>Systematic strategies from applied mathematics for stochastic modelling in climate are reviewed here. One of the topics discussed is the stochastic modelling of mid-latitude low-frequency variability through a few teleconnection patterns, including the central role and physical mechanisms responsible for multiplicative noise. A new low-dimensional stochastic model is developed here, which mimics key features of atmospheric general circulation models, to test the fidelity of stochastic mode reduction procedures. The second topic discussed here is the systematic design of stochastic lattice models to capture irregular and highly intermittent features that are not resolved by a deterministic parametrization. A recent applied mathematics design principle for stochastic column modelling with intermittency is illustrated in an idealized setting for deep tropical convection; the practical effect of this stochastic model in both slowing down convectively coupled waves and increasing their fluctuations is presented here.</description><subject>Applied mathematics</subject><subject>Atmospheric models</subject><subject>Climate models</subject><subject>Convection</subject><subject>Determinism</subject><subject>Intermittency</subject><subject>Low-Frequency Variability</subject><subject>Mathematical lattices</subject><subject>Mathematical models</subject><subject>Modeling</subject><subject>Multiplicative Noise</subject><subject>Parametric models</subject><subject>Stochastic models</subject><subject>Tropical Convection</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9UcFu1DAUjBCIlsKVGygnbln8nNhxbqwWCohKSKVAb5bjOF1vs3GwncLy9bw0q6IVopc4TzPjNzNOkudAFkAq8dqHqBaUELEgBOiD5BiKEjJacfoQ_3NeZIzkl0fJkxA2yADO6OPkCERRMFbS4-R02adqGDprmnSr4trgx-qQDsaHwehob0zq-jREp9cqIJRuXWO6zvZXaet8qjuLCvM0edSqLphn-_Mk-Xr67mL1ITv7_P7janmWaVbxmJWkrlQDrBWKUVFxwWolcKKl0ILX2uimAc2aCgpSAHJNWddK5Q0F0G2b5yfJq_newbsfowlRbm3Q6Ef1xo1BlsB5QXmJxMVM1N6F4E0rB49O_U4CkVNzcmpOTs3JqTkUvNzfPNZb0_yl76tCwvVM8G6HEZ22Ju7kxo2-x1Gef7lY3uScWxAlk0TkQEpglMvfdph3IShtCKORt5TD_f_aye_b9t8QL2bVBh_M32WgDCoiCoF4NuM2RPPrDlf-WmJnaOqbKORb9qlaifNL-R35MPPX9mr903ojD-zgMOyD3UaiBZ2af3OvZnKsXR9NHw-Vsh27Tg5Nm_8B7gzgrQ</recordid><startdate>20080728</startdate><enddate>20080728</enddate><creator>Majda, Andrew J</creator><creator>Franzke, Christian</creator><creator>Khouider, Boualem</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080728</creationdate><title>An applied mathematics perspective on stochastic modelling for climate</title><author>Majda, Andrew J ; Franzke, Christian ; Khouider, Boualem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c596t-70b9ad15f8a5289685ba85f8278c86bcecdd1c5d914041b9ae7bbaa3d211cff33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied mathematics</topic><topic>Atmospheric models</topic><topic>Climate models</topic><topic>Convection</topic><topic>Determinism</topic><topic>Intermittency</topic><topic>Low-Frequency Variability</topic><topic>Mathematical lattices</topic><topic>Mathematical models</topic><topic>Modeling</topic><topic>Multiplicative Noise</topic><topic>Parametric models</topic><topic>Stochastic models</topic><topic>Tropical Convection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majda, Andrew J</creatorcontrib><creatorcontrib>Franzke, Christian</creatorcontrib><creatorcontrib>Khouider, Boualem</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majda, Andrew J</au><au>Franzke, Christian</au><au>Khouider, Boualem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An applied mathematics perspective on stochastic modelling for climate</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><addtitle>PHIL TRANS R SOC A</addtitle><date>2008-07-28</date><risdate>2008</risdate><volume>366</volume><issue>1875</issue><spage>2427</spage><epage>2453</epage><pages>2427-2453</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>Systematic strategies from applied mathematics for stochastic modelling in climate are reviewed here. One of the topics discussed is the stochastic modelling of mid-latitude low-frequency variability through a few teleconnection patterns, including the central role and physical mechanisms responsible for multiplicative noise. A new low-dimensional stochastic model is developed here, which mimics key features of atmospheric general circulation models, to test the fidelity of stochastic mode reduction procedures. The second topic discussed here is the systematic design of stochastic lattice models to capture irregular and highly intermittent features that are not resolved by a deterministic parametrization. A recent applied mathematics design principle for stochastic column modelling with intermittency is illustrated in an idealized setting for deep tropical convection; the practical effect of this stochastic model in both slowing down convectively coupled waves and increasing their fluctuations is presented here.</abstract><cop>London</cop><pub>The Royal Society</pub><pmid>18445572</pmid><doi>10.1098/rsta.2008.0012</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-503X |
ispartof | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2008-07, Vol.366 (1875), p.2427-2453 |
issn | 1364-503X 1471-2962 |
language | eng |
recordid | cdi_royalsociety_journals_10_1098_rsta_2008_0012 |
source | JSTOR Mathematics & Statistics; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Applied mathematics Atmospheric models Climate models Convection Determinism Intermittency Low-Frequency Variability Mathematical lattices Mathematical models Modeling Multiplicative Noise Parametric models Stochastic models Tropical Convection |
title | An applied mathematics perspective on stochastic modelling for climate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A57%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20applied%20mathematics%20perspective%20on%20stochastic%20modelling%20for%20climate&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Majda,%20Andrew%20J&rft.date=2008-07-28&rft.volume=366&rft.issue=1875&rft.spage=2427&rft.epage=2453&rft.pages=2427-2453&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2008.0012&rft_dat=%3Cjstor_royal%3E25190848%3C/jstor_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71664267&rft_id=info:pmid/18445572&rft_jstor_id=25190848&rfr_iscdi=true |