Diffraction topography using white X-ray beams with low effective divergence

The divergence of the incident X-ray beam as seen from a point in the specimen, the effective divergence α, is of the order of a microradian at a third generation synchrotron radiation source. This entails two effects on white- beam X-ray diffraction topography. 1. The specimen-detector distance can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 1999-10, Vol.357 (1761), p.2741-2754
Hauptverfasser: Baruchel, José, Cloetens, Peter, Härtwig, Jürgen, Schlenker, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2754
container_issue 1761
container_start_page 2741
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 357
creator Baruchel, José
Cloetens, Peter
Härtwig, Jürgen
Schlenker, Michel
description The divergence of the incident X-ray beam as seen from a point in the specimen, the effective divergence α, is of the order of a microradian at a third generation synchrotron radiation source. This entails two effects on white- beam X-ray diffraction topography. 1. The specimen-detector distance can be varied at will in the metre range without appreciable blurring of the image. Thus the discontinuous change in distortion associated with magnetic domains, or implanted layers in a piezoelectric material, can often be directly measured. It was also possible to observe focusing effect due to continuous spatial variations of lattice plane orientation. This effect was visualized in the cases of the images of single dislocations, from elastic resonance patterns, and on wafer-bonded samples. 2. The small value of α can also be described as yielding appreciable lateral coherence of the beam. Propagation of the diffracted beam, i.e. Fresnel diffraction, can turn variations of the phase of the diffracted beam into changes in intensity, hence contrast. In the case of a periodic spatial variation of the phase due to periodic poling, the Talbot effect in the diffracted beam provides the possibility of measuring the difference in phase of a structure factor in inversion-related domains, i.e. for Friedel pairs.
doi_str_mv 10.1098/rsta.1999.0463
format Article
fullrecord <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rsta_1999_0463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>55267</jstor_id><sourcerecordid>55267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-966743e0230bbd3670388b71e15a255479edfca7f5f8aee4e92de18a4edf2aae3</originalsourceid><addsrcrecordid>eNp9UE1vEzEUXCGQKIUrB07-Axvs9fexKh-piIREU9Sb5Wyesw5tvLKdhuXX15tFlaqqvdh-npk3701VfSR4RrBWn2PKdka01jPMBH1VnRAmSd1o0bwubypYzTG9flu9S2mLMSGCNyfV4ot3Lto2-7BDOfRhE23fDWif_G6DDp3PgK7raAe0Anub0MHnDt2EAwLnoKjuAK3LETewa-F99cbZmwQf_t-n1dW3r8vzeb34-f3i_GxRt0ypXGshJKOAG4pXqzUVElOlVpIA4bbhnEkNa9da6bhTFoCBbtZAlGXlu7EW6Gk1m_q2MaQUwZk--lsbB0OwGbMwYxZmzMKMWRQBnQQxDGWw0HrIg9mGfdyV8nlVekn163J5VsjijnLpiRTEYEUJllRzaf75_thuJJhCMD6lPZgj7bHNU9dPk-s25RAfNuO8EbKA9QT6lOHvA2jjH1NQyc1vxcyPS73A8yUx88InE7_zm-7gI5hHu5SiL-bjfMfJGskIvQd-s7Pe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Diffraction topography using white X-ray beams with low effective divergence</title><source>JSTOR Mathematics &amp; Statistics</source><creator>Baruchel, José ; Cloetens, Peter ; Härtwig, Jürgen ; Schlenker, Michel</creator><contributor>Bowen, D. K. ; Tanner, B. K. ; Tanner, B. K. ; Bowen, D. K.</contributor><creatorcontrib>Baruchel, José ; Cloetens, Peter ; Härtwig, Jürgen ; Schlenker, Michel ; Bowen, D. K. ; Tanner, B. K. ; Tanner, B. K. ; Bowen, D. K.</creatorcontrib><description>The divergence of the incident X-ray beam as seen from a point in the specimen, the effective divergence α, is of the order of a microradian at a third generation synchrotron radiation source. This entails two effects on white- beam X-ray diffraction topography. 1. The specimen-detector distance can be varied at will in the metre range without appreciable blurring of the image. Thus the discontinuous change in distortion associated with magnetic domains, or implanted layers in a piezoelectric material, can often be directly measured. It was also possible to observe focusing effect due to continuous spatial variations of lattice plane orientation. This effect was visualized in the cases of the images of single dislocations, from elastic resonance patterns, and on wafer-bonded samples. 2. The small value of α can also be described as yielding appreciable lateral coherence of the beam. Propagation of the diffracted beam, i.e. Fresnel diffraction, can turn variations of the phase of the diffracted beam into changes in intensity, hence contrast. In the case of a periodic spatial variation of the phase due to periodic poling, the Talbot effect in the diffracted beam provides the possibility of measuring the difference in phase of a structure factor in inversion-related domains, i.e. for Friedel pairs.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.1999.0463</identifier><language>eng</language><publisher>The Royal Society</publisher><subject>Bragg-Diffraction Imaging ; Crystal lattices ; Crystallographic Phase Determination ; Crystals ; Electric fields ; Imaging ; Magnetic fields ; Magnetite ; Optical Coherence ; Semiconductor wafers ; Synchrotron Radiation ; Synchrotrons ; Wave diffraction ; X-Ray Imaging ; X-Ray Topography</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 1999-10, Vol.357 (1761), p.2741-2754</ispartof><rights>Copyright 1999 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-966743e0230bbd3670388b71e15a255479edfca7f5f8aee4e92de18a4edf2aae3</citedby><cites>FETCH-LOGICAL-c488t-966743e0230bbd3670388b71e15a255479edfca7f5f8aee4e92de18a4edf2aae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/55267$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/55267$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,829,27905,27906,58002,58235</link.rule.ids></links><search><contributor>Bowen, D. K.</contributor><contributor>Tanner, B. K.</contributor><contributor>Tanner, B. K.</contributor><contributor>Bowen, D. K.</contributor><creatorcontrib>Baruchel, José</creatorcontrib><creatorcontrib>Cloetens, Peter</creatorcontrib><creatorcontrib>Härtwig, Jürgen</creatorcontrib><creatorcontrib>Schlenker, Michel</creatorcontrib><title>Diffraction topography using white X-ray beams with low effective divergence</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><description>The divergence of the incident X-ray beam as seen from a point in the specimen, the effective divergence α, is of the order of a microradian at a third generation synchrotron radiation source. This entails two effects on white- beam X-ray diffraction topography. 1. The specimen-detector distance can be varied at will in the metre range without appreciable blurring of the image. Thus the discontinuous change in distortion associated with magnetic domains, or implanted layers in a piezoelectric material, can often be directly measured. It was also possible to observe focusing effect due to continuous spatial variations of lattice plane orientation. This effect was visualized in the cases of the images of single dislocations, from elastic resonance patterns, and on wafer-bonded samples. 2. The small value of α can also be described as yielding appreciable lateral coherence of the beam. Propagation of the diffracted beam, i.e. Fresnel diffraction, can turn variations of the phase of the diffracted beam into changes in intensity, hence contrast. In the case of a periodic spatial variation of the phase due to periodic poling, the Talbot effect in the diffracted beam provides the possibility of measuring the difference in phase of a structure factor in inversion-related domains, i.e. for Friedel pairs.</description><subject>Bragg-Diffraction Imaging</subject><subject>Crystal lattices</subject><subject>Crystallographic Phase Determination</subject><subject>Crystals</subject><subject>Electric fields</subject><subject>Imaging</subject><subject>Magnetic fields</subject><subject>Magnetite</subject><subject>Optical Coherence</subject><subject>Semiconductor wafers</subject><subject>Synchrotron Radiation</subject><subject>Synchrotrons</subject><subject>Wave diffraction</subject><subject>X-Ray Imaging</subject><subject>X-Ray Topography</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp9UE1vEzEUXCGQKIUrB07-Axvs9fexKh-piIREU9Sb5Wyesw5tvLKdhuXX15tFlaqqvdh-npk3701VfSR4RrBWn2PKdka01jPMBH1VnRAmSd1o0bwubypYzTG9flu9S2mLMSGCNyfV4ot3Lto2-7BDOfRhE23fDWif_G6DDp3PgK7raAe0Anub0MHnDt2EAwLnoKjuAK3LETewa-F99cbZmwQf_t-n1dW3r8vzeb34-f3i_GxRt0ypXGshJKOAG4pXqzUVElOlVpIA4bbhnEkNa9da6bhTFoCBbtZAlGXlu7EW6Gk1m_q2MaQUwZk--lsbB0OwGbMwYxZmzMKMWRQBnQQxDGWw0HrIg9mGfdyV8nlVekn163J5VsjijnLpiRTEYEUJllRzaf75_thuJJhCMD6lPZgj7bHNU9dPk-s25RAfNuO8EbKA9QT6lOHvA2jjH1NQyc1vxcyPS73A8yUx88InE7_zm-7gI5hHu5SiL-bjfMfJGskIvQd-s7Pe</recordid><startdate>19991001</startdate><enddate>19991001</enddate><creator>Baruchel, José</creator><creator>Cloetens, Peter</creator><creator>Härtwig, Jürgen</creator><creator>Schlenker, Michel</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19991001</creationdate><title>Diffraction topography using white X-ray beams with low effective divergence</title><author>Baruchel, José ; Cloetens, Peter ; Härtwig, Jürgen ; Schlenker, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-966743e0230bbd3670388b71e15a255479edfca7f5f8aee4e92de18a4edf2aae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Bragg-Diffraction Imaging</topic><topic>Crystal lattices</topic><topic>Crystallographic Phase Determination</topic><topic>Crystals</topic><topic>Electric fields</topic><topic>Imaging</topic><topic>Magnetic fields</topic><topic>Magnetite</topic><topic>Optical Coherence</topic><topic>Semiconductor wafers</topic><topic>Synchrotron Radiation</topic><topic>Synchrotrons</topic><topic>Wave diffraction</topic><topic>X-Ray Imaging</topic><topic>X-Ray Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baruchel, José</creatorcontrib><creatorcontrib>Cloetens, Peter</creatorcontrib><creatorcontrib>Härtwig, Jürgen</creatorcontrib><creatorcontrib>Schlenker, Michel</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baruchel, José</au><au>Cloetens, Peter</au><au>Härtwig, Jürgen</au><au>Schlenker, Michel</au><au>Bowen, D. K.</au><au>Tanner, B. K.</au><au>Tanner, B. K.</au><au>Bowen, D. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffraction topography using white X-ray beams with low effective divergence</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><date>1999-10-01</date><risdate>1999</risdate><volume>357</volume><issue>1761</issue><spage>2741</spage><epage>2754</epage><pages>2741-2754</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>The divergence of the incident X-ray beam as seen from a point in the specimen, the effective divergence α, is of the order of a microradian at a third generation synchrotron radiation source. This entails two effects on white- beam X-ray diffraction topography. 1. The specimen-detector distance can be varied at will in the metre range without appreciable blurring of the image. Thus the discontinuous change in distortion associated with magnetic domains, or implanted layers in a piezoelectric material, can often be directly measured. It was also possible to observe focusing effect due to continuous spatial variations of lattice plane orientation. This effect was visualized in the cases of the images of single dislocations, from elastic resonance patterns, and on wafer-bonded samples. 2. The small value of α can also be described as yielding appreciable lateral coherence of the beam. Propagation of the diffracted beam, i.e. Fresnel diffraction, can turn variations of the phase of the diffracted beam into changes in intensity, hence contrast. In the case of a periodic spatial variation of the phase due to periodic poling, the Talbot effect in the diffracted beam provides the possibility of measuring the difference in phase of a structure factor in inversion-related domains, i.e. for Friedel pairs.</abstract><pub>The Royal Society</pub><doi>10.1098/rsta.1999.0463</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 1999-10, Vol.357 (1761), p.2741-2754
issn 1364-503X
1471-2962
language eng
recordid cdi_royalsociety_journals_10_1098_rsta_1999_0463
source JSTOR Mathematics & Statistics
subjects Bragg-Diffraction Imaging
Crystal lattices
Crystallographic Phase Determination
Crystals
Electric fields
Imaging
Magnetic fields
Magnetite
Optical Coherence
Semiconductor wafers
Synchrotron Radiation
Synchrotrons
Wave diffraction
X-Ray Imaging
X-Ray Topography
title Diffraction topography using white X-ray beams with low effective divergence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffraction%20topography%20using%20white%20X-ray%20beams%20with%20low%20effective%20divergence&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Baruchel,%20Jos%C3%A9&rft.date=1999-10-01&rft.volume=357&rft.issue=1761&rft.spage=2741&rft.epage=2754&rft.pages=2741-2754&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.1999.0463&rft_dat=%3Cjstor_royal%3E55267%3C/jstor_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=55267&rfr_iscdi=true