Insulin Assembly: Its Modification by Protein Engineering and Ligand Binding

X-ray analysis of insulin crystals has revealed the nature of the surfaces involved in its assembly to dimers and hexamers. The protein contacts between monomers are well defined but can vary. Contacts between dimers in the hexamer are generally looser and can change remarkably in their structure, p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 1993-10, Vol.345 (1674), p.153-164
Hauptverfasser: Dodson, E. J., Dodson, G. G., Hubbard, R. E., Moody, P. C. E., Turkenburg, J., Whittingham, J., Xiao, B., Brange, J., Kaarsholm, N., Thogersen, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164
container_issue 1674
container_start_page 153
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 345
creator Dodson, E. J.
Dodson, G. G.
Hubbard, R. E.
Moody, P. C. E.
Turkenburg, J.
Whittingham, J.
Xiao, B.
Brange, J.
Kaarsholm, N.
Thogersen, H.
description X-ray analysis of insulin crystals has revealed the nature of the surfaces involved in its assembly to dimers and hexamers. The protein contacts between monomers are well defined but can vary. Contacts between dimers in the hexamer are generally looser and can change remarkably in their structure, particularly by the existence of extended or helical conformations at the N terminus of the B chain. The assembly of insulin to hexamers is associated with the hormone's slow absorption by tissue; in the diabetic this can lead to inappropriate insulin levels in the blood. Experiments to improve insulin absorption at the injection site have been based on constructing `monomeric' insulins by protein engineering. These have led to stable monomers with more rapid absorption characteristics. The most effective mechanism to favour the monomeric state was the introduction of carboxylic acids which generated electrostatic repulsion in the dimer and hexamer species. Some of the mutated insulins have been crystallized and their structures determined, revealing the structural basis of their assembly properties. In the presence of chloride or phenol (and related molecules) the otherwise extended structure of residues B1-B8 forms an alpha helix, packing against the adjacent dimer. This provides additional sites for zinc at the dimer-dimer interfaces, and also can provide a binding site for phenol and related molecules. The surfaces in this cavity provide a template for modelling in other ligands.
doi_str_mv 10.1098/rsta.1993.0126
format Article
fullrecord <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rsta_1993_0126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>54207</jstor_id><sourcerecordid>54207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-5b6b3fa0efa8040f31e8ba6214f840b399665618a5b638a1c556a4983b388a853</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIQOHKgVN-IMWOH3W4oIJ4VCoC8ZC4WU5qF1fBrmwXFL4eJ0UIhOC03vXM7OwAcIDgEMGSH_kQ5RCVJR5CVLANsIPICOVFyYrN9MaM5BTip22wG8ICQoQYLXbAdGLDqjE2G4egXqqmPc4mMWTXbma0qWU0zmZVm916F1VCndu5sUp5Y-eZtLNsauZdOTV2lkZ7YEvLJqj9zzoAjxfnD2dX-fTmcnI2nuY1waOY04pVWEuotOSQQI2R4pVkBSKaE1jhsmSMMsRlAmIuUU0pk6TkuMKcS07xAAzXurV3IXilxdKbF-lbgaDoshBdFqLLQnRZJEJYE7xrkzFXGxVbsXArb1Mr7u4fxgkMXzGhBrEREZBjBEepxeLdLHu5DiDSRJgQVkr0sJ9rfm_F_2390-vhmrUI0fmvyygpkqEBOFl_Ppv585vxSvzQ7qVqZ6Oysffau0TpCr1qGrGc6aQA_1Vw7TJpfOfiDxm_uWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Insulin Assembly: Its Modification by Protein Engineering and Ligand Binding</title><source>JSTOR Mathematics and Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Dodson, E. J. ; Dodson, G. G. ; Hubbard, R. E. ; Moody, P. C. E. ; Turkenburg, J. ; Whittingham, J. ; Xiao, B. ; Brange, J. ; Kaarsholm, N. ; Thogersen, H.</creator><creatorcontrib>Dodson, E. J. ; Dodson, G. G. ; Hubbard, R. E. ; Moody, P. C. E. ; Turkenburg, J. ; Whittingham, J. ; Xiao, B. ; Brange, J. ; Kaarsholm, N. ; Thogersen, H.</creatorcontrib><description>X-ray analysis of insulin crystals has revealed the nature of the surfaces involved in its assembly to dimers and hexamers. The protein contacts between monomers are well defined but can vary. Contacts between dimers in the hexamer are generally looser and can change remarkably in their structure, particularly by the existence of extended or helical conformations at the N terminus of the B chain. The assembly of insulin to hexamers is associated with the hormone's slow absorption by tissue; in the diabetic this can lead to inappropriate insulin levels in the blood. Experiments to improve insulin absorption at the injection site have been based on constructing `monomeric' insulins by protein engineering. These have led to stable monomers with more rapid absorption characteristics. The most effective mechanism to favour the monomeric state was the introduction of carboxylic acids which generated electrostatic repulsion in the dimer and hexamer species. Some of the mutated insulins have been crystallized and their structures determined, revealing the structural basis of their assembly properties. In the presence of chloride or phenol (and related molecules) the otherwise extended structure of residues B1-B8 forms an alpha helix, packing against the adjacent dimer. This provides additional sites for zinc at the dimer-dimer interfaces, and also can provide a binding site for phenol and related molecules. The surfaces in this cavity provide a template for modelling in other ligands.</description><identifier>ISSN: 1364-503X</identifier><identifier>ISSN: 0962-8428</identifier><identifier>EISSN: 1471-2962</identifier><identifier>EISSN: 2054-0299</identifier><identifier>DOI: 10.1098/rsta.1993.0126</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Crystal structure ; Dimers ; Electrostatics ; Insulin ; Ligands ; Molecules ; Monomers ; Phenols ; Protein engineering ; Zinc</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 1993-10, Vol.345 (1674), p.153-164</ispartof><rights>Copyright 1993 The Royal Society</rights><rights>Scanned images copyright © 2017, Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-5b6b3fa0efa8040f31e8ba6214f840b399665618a5b638a1c556a4983b388a853</citedby><cites>FETCH-LOGICAL-c437t-5b6b3fa0efa8040f31e8ba6214f840b399665618a5b638a1c556a4983b388a853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/54207$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/54207$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Dodson, E. J.</creatorcontrib><creatorcontrib>Dodson, G. G.</creatorcontrib><creatorcontrib>Hubbard, R. E.</creatorcontrib><creatorcontrib>Moody, P. C. E.</creatorcontrib><creatorcontrib>Turkenburg, J.</creatorcontrib><creatorcontrib>Whittingham, J.</creatorcontrib><creatorcontrib>Xiao, B.</creatorcontrib><creatorcontrib>Brange, J.</creatorcontrib><creatorcontrib>Kaarsholm, N.</creatorcontrib><creatorcontrib>Thogersen, H.</creatorcontrib><title>Insulin Assembly: Its Modification by Protein Engineering and Ligand Binding</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Phil. Trans. R. Soc. Lond. A</addtitle><description>X-ray analysis of insulin crystals has revealed the nature of the surfaces involved in its assembly to dimers and hexamers. The protein contacts between monomers are well defined but can vary. Contacts between dimers in the hexamer are generally looser and can change remarkably in their structure, particularly by the existence of extended or helical conformations at the N terminus of the B chain. The assembly of insulin to hexamers is associated with the hormone's slow absorption by tissue; in the diabetic this can lead to inappropriate insulin levels in the blood. Experiments to improve insulin absorption at the injection site have been based on constructing `monomeric' insulins by protein engineering. These have led to stable monomers with more rapid absorption characteristics. The most effective mechanism to favour the monomeric state was the introduction of carboxylic acids which generated electrostatic repulsion in the dimer and hexamer species. Some of the mutated insulins have been crystallized and their structures determined, revealing the structural basis of their assembly properties. In the presence of chloride or phenol (and related molecules) the otherwise extended structure of residues B1-B8 forms an alpha helix, packing against the adjacent dimer. This provides additional sites for zinc at the dimer-dimer interfaces, and also can provide a binding site for phenol and related molecules. The surfaces in this cavity provide a template for modelling in other ligands.</description><subject>Crystal structure</subject><subject>Dimers</subject><subject>Electrostatics</subject><subject>Insulin</subject><subject>Ligands</subject><subject>Molecules</subject><subject>Monomers</subject><subject>Phenols</subject><subject>Protein engineering</subject><subject>Zinc</subject><issn>1364-503X</issn><issn>0962-8428</issn><issn>1471-2962</issn><issn>2054-0299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIQOHKgVN-IMWOH3W4oIJ4VCoC8ZC4WU5qF1fBrmwXFL4eJ0UIhOC03vXM7OwAcIDgEMGSH_kQ5RCVJR5CVLANsIPICOVFyYrN9MaM5BTip22wG8ICQoQYLXbAdGLDqjE2G4egXqqmPc4mMWTXbma0qWU0zmZVm916F1VCndu5sUp5Y-eZtLNsauZdOTV2lkZ7YEvLJqj9zzoAjxfnD2dX-fTmcnI2nuY1waOY04pVWEuotOSQQI2R4pVkBSKaE1jhsmSMMsRlAmIuUU0pk6TkuMKcS07xAAzXurV3IXilxdKbF-lbgaDoshBdFqLLQnRZJEJYE7xrkzFXGxVbsXArb1Mr7u4fxgkMXzGhBrEREZBjBEepxeLdLHu5DiDSRJgQVkr0sJ9rfm_F_2390-vhmrUI0fmvyygpkqEBOFl_Ppv585vxSvzQ7qVqZ6Oysffau0TpCr1qGrGc6aQA_1Vw7TJpfOfiDxm_uWc</recordid><startdate>19931015</startdate><enddate>19931015</enddate><creator>Dodson, E. J.</creator><creator>Dodson, G. G.</creator><creator>Hubbard, R. E.</creator><creator>Moody, P. C. E.</creator><creator>Turkenburg, J.</creator><creator>Whittingham, J.</creator><creator>Xiao, B.</creator><creator>Brange, J.</creator><creator>Kaarsholm, N.</creator><creator>Thogersen, H.</creator><general>The Royal Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19931015</creationdate><title>Insulin Assembly: Its Modification by Protein Engineering and Ligand Binding</title><author>Dodson, E. J. ; Dodson, G. G. ; Hubbard, R. E. ; Moody, P. C. E. ; Turkenburg, J. ; Whittingham, J. ; Xiao, B. ; Brange, J. ; Kaarsholm, N. ; Thogersen, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-5b6b3fa0efa8040f31e8ba6214f840b399665618a5b638a1c556a4983b388a853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Crystal structure</topic><topic>Dimers</topic><topic>Electrostatics</topic><topic>Insulin</topic><topic>Ligands</topic><topic>Molecules</topic><topic>Monomers</topic><topic>Phenols</topic><topic>Protein engineering</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dodson, E. J.</creatorcontrib><creatorcontrib>Dodson, G. G.</creatorcontrib><creatorcontrib>Hubbard, R. E.</creatorcontrib><creatorcontrib>Moody, P. C. E.</creatorcontrib><creatorcontrib>Turkenburg, J.</creatorcontrib><creatorcontrib>Whittingham, J.</creatorcontrib><creatorcontrib>Xiao, B.</creatorcontrib><creatorcontrib>Brange, J.</creatorcontrib><creatorcontrib>Kaarsholm, N.</creatorcontrib><creatorcontrib>Thogersen, H.</creatorcontrib><collection>CrossRef</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dodson, E. J.</au><au>Dodson, G. G.</au><au>Hubbard, R. E.</au><au>Moody, P. C. E.</au><au>Turkenburg, J.</au><au>Whittingham, J.</au><au>Xiao, B.</au><au>Brange, J.</au><au>Kaarsholm, N.</au><au>Thogersen, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insulin Assembly: Its Modification by Protein Engineering and Ligand Binding</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><stitle>Phil. Trans. R. Soc. Lond. A</stitle><date>1993-10-15</date><risdate>1993</risdate><volume>345</volume><issue>1674</issue><spage>153</spage><epage>164</epage><pages>153-164</pages><issn>1364-503X</issn><issn>0962-8428</issn><eissn>1471-2962</eissn><eissn>2054-0299</eissn><abstract>X-ray analysis of insulin crystals has revealed the nature of the surfaces involved in its assembly to dimers and hexamers. The protein contacts between monomers are well defined but can vary. Contacts between dimers in the hexamer are generally looser and can change remarkably in their structure, particularly by the existence of extended or helical conformations at the N terminus of the B chain. The assembly of insulin to hexamers is associated with the hormone's slow absorption by tissue; in the diabetic this can lead to inappropriate insulin levels in the blood. Experiments to improve insulin absorption at the injection site have been based on constructing `monomeric' insulins by protein engineering. These have led to stable monomers with more rapid absorption characteristics. The most effective mechanism to favour the monomeric state was the introduction of carboxylic acids which generated electrostatic repulsion in the dimer and hexamer species. Some of the mutated insulins have been crystallized and their structures determined, revealing the structural basis of their assembly properties. In the presence of chloride or phenol (and related molecules) the otherwise extended structure of residues B1-B8 forms an alpha helix, packing against the adjacent dimer. This provides additional sites for zinc at the dimer-dimer interfaces, and also can provide a binding site for phenol and related molecules. The surfaces in this cavity provide a template for modelling in other ligands.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rsta.1993.0126</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 1993-10, Vol.345 (1674), p.153-164
issn 1364-503X
0962-8428
1471-2962
2054-0299
language eng
recordid cdi_royalsociety_journals_10_1098_rsta_1993_0126
source JSTOR Mathematics and Statistics; JSTOR Archive Collection A-Z Listing
subjects Crystal structure
Dimers
Electrostatics
Insulin
Ligands
Molecules
Monomers
Phenols
Protein engineering
Zinc
title Insulin Assembly: Its Modification by Protein Engineering and Ligand Binding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insulin%20Assembly:%20Its%20Modification%20by%20Protein%20Engineering%20and%20Ligand%20Binding&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Dodson,%20E.%20J.&rft.date=1993-10-15&rft.volume=345&rft.issue=1674&rft.spage=153&rft.epage=164&rft.pages=153-164&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.1993.0126&rft_dat=%3Cjstor_royal%3E54207%3C/jstor_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=54207&rfr_iscdi=true