Sulphate Reduction, Organic Matter Decomposition and Pyrite Formation [and Discussion]

Laboratory, field, and theoretical studies have shown that the rate of bacterial sulphate reduction during early diagenesis depends primarily on the reactivity of sedimentary organic matter whose decomposition follows first-order kinetics, with rate constants varying over six orders of magnitude. De...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences 1985-07, Vol.315 (1531), p.25-38
Hauptverfasser: Berner, R. A., De Leeuw, J. W., Spiro, B., Murchison, D. G., Eglinton, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue 1531
container_start_page 25
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences
container_volume 315
creator Berner, R. A.
De Leeuw, J. W.
Spiro, B.
Murchison, D. G.
Eglinton, G.
description Laboratory, field, and theoretical studies have shown that the rate of bacterial sulphate reduction during early diagenesis depends primarily on the reactivity of sedimentary organic matter whose decomposition follows first-order kinetics, with rate constants varying over six orders of magnitude. Decay rates decrease with decreasing sediment burial rate and, for a given sediment, with depth, because of the successive utilization by bacteria of less and less reactive organic compounds. High burial (and bioturbation) rates enable reactive compounds to become available for sulphate reduction, at depth, which otherwise would be destroyed by molecular oxygen at or above the sediment--water interface. An important consequence of bacterial sulphate reduction is the formation of sedimentary pyrite, FeS$_{2}$. In normal marine sediments (those deposited in oxygenated bottom waters) pyrite formation is limited by the concentration and reactivity of organic matter, whereas in euxinic (sulphidic) basins pyrite is limited by the abundance and reactivity of detrital iron minerals, and in non-saline swamp and lake sediments by the low levels of dissolved sulphate found in fresh water. Because of these differences in limiting factors, the three environments can be distinguished in both modern sediments and ancient rocks by plots of organic carbon, C against pyrite sulphur, S. Values of the C:S ratio based on theoretical calculations indicate that worldwide the bulk of organic matter burial has shifted considerably between these environments over Phanerozoic time.
doi_str_mv 10.1098/rsta.1985.0027
format Article
fullrecord <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rsta_1985_0027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>37702</jstor_id><sourcerecordid>37702</sourcerecordid><originalsourceid>FETCH-LOGICAL-a458t-a3358bba74bb617dfb606373e3fd09e23290130901cbafe34448da4a7f451df43</originalsourceid><addsrcrecordid>eNp9kF1LHDEUhofSQq3trRdezQ_orDk5yXzcFMSPVlAsaosgEjIziZtldzIkmZb115vslqKUepPkfDznPXmzbA_IDEhTHzgf5Ayams8IodWbbAdYBQVtSvo2vrFkBSd4-z774P2CEICS053s5_W0HOcyqPxK9VMXjB0-55fuQQ6myy9kCMrlx6qzq9F6k6q5HPr8-9qZiJxat5Kb5F3KHhvfTd7H-P5j9k7LpVef_ty72Y_Tk5ujb8X55dezo8PzQjJeh0Ii8rptZcXatoSq121JSqxQoe5JoyjShgCSeHSt1AoZY3Uvmaw049BrhrvZbDu3c9Z7p7QYnVlJtxZARHJFJFdEckUkVyKAW8DZdVzMdkaFtVjYyQ0x_D_lX6Ourm8OoUH2C4Eb4AiC1AiEUQQmHs24GZcaRGwQxvtJiU3bS5l_Vfe3qgsfrPv7M6wqQmPxYFucm4f5b-OUeLFbDMY4LOltlCiPxJdXiSTe2SGoITznhJ6WSzH2Gp8AVRm90w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sulphate Reduction, Organic Matter Decomposition and Pyrite Formation [and Discussion]</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Berner, R. A. ; De Leeuw, J. W. ; Spiro, B. ; Murchison, D. G. ; Eglinton, G.</creator><creatorcontrib>Berner, R. A. ; De Leeuw, J. W. ; Spiro, B. ; Murchison, D. G. ; Eglinton, G.</creatorcontrib><description>Laboratory, field, and theoretical studies have shown that the rate of bacterial sulphate reduction during early diagenesis depends primarily on the reactivity of sedimentary organic matter whose decomposition follows first-order kinetics, with rate constants varying over six orders of magnitude. Decay rates decrease with decreasing sediment burial rate and, for a given sediment, with depth, because of the successive utilization by bacteria of less and less reactive organic compounds. High burial (and bioturbation) rates enable reactive compounds to become available for sulphate reduction, at depth, which otherwise would be destroyed by molecular oxygen at or above the sediment--water interface. An important consequence of bacterial sulphate reduction is the formation of sedimentary pyrite, FeS$_{2}$. In normal marine sediments (those deposited in oxygenated bottom waters) pyrite formation is limited by the concentration and reactivity of organic matter, whereas in euxinic (sulphidic) basins pyrite is limited by the abundance and reactivity of detrital iron minerals, and in non-saline swamp and lake sediments by the low levels of dissolved sulphate found in fresh water. Because of these differences in limiting factors, the three environments can be distinguished in both modern sediments and ancient rocks by plots of organic carbon, C against pyrite sulphur, S. Values of the C:S ratio based on theoretical calculations indicate that worldwide the bulk of organic matter burial has shifted considerably between these environments over Phanerozoic time.</description><identifier>ISSN: 1364-503X</identifier><identifier>ISSN: 0080-4614</identifier><identifier>EISSN: 1471-2962</identifier><identifier>EISSN: 2054-0272</identifier><identifier>DOI: 10.1098/rsta.1985.0027</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Carbon ; Euxinia ; Fresh water ; Iron mining ; Marine sediments ; Pyrites ; Reactivity ; Sea water ; Sediments ; Sulfur</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences, 1985-07, Vol.315 (1531), p.25-38</ispartof><rights>Copyright 1985 The Royal Society</rights><rights>Scanned images copyright © 2017, Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a458t-a3358bba74bb617dfb606373e3fd09e23290130901cbafe34448da4a7f451df43</citedby><cites>FETCH-LOGICAL-a458t-a3358bba74bb617dfb606373e3fd09e23290130901cbafe34448da4a7f451df43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/37702$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/37702$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Berner, R. A.</creatorcontrib><creatorcontrib>De Leeuw, J. W.</creatorcontrib><creatorcontrib>Spiro, B.</creatorcontrib><creatorcontrib>Murchison, D. G.</creatorcontrib><creatorcontrib>Eglinton, G.</creatorcontrib><title>Sulphate Reduction, Organic Matter Decomposition and Pyrite Formation [and Discussion]</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences</title><addtitle>Phil. Trans. R. Soc. Lond. A</addtitle><description>Laboratory, field, and theoretical studies have shown that the rate of bacterial sulphate reduction during early diagenesis depends primarily on the reactivity of sedimentary organic matter whose decomposition follows first-order kinetics, with rate constants varying over six orders of magnitude. Decay rates decrease with decreasing sediment burial rate and, for a given sediment, with depth, because of the successive utilization by bacteria of less and less reactive organic compounds. High burial (and bioturbation) rates enable reactive compounds to become available for sulphate reduction, at depth, which otherwise would be destroyed by molecular oxygen at or above the sediment--water interface. An important consequence of bacterial sulphate reduction is the formation of sedimentary pyrite, FeS$_{2}$. In normal marine sediments (those deposited in oxygenated bottom waters) pyrite formation is limited by the concentration and reactivity of organic matter, whereas in euxinic (sulphidic) basins pyrite is limited by the abundance and reactivity of detrital iron minerals, and in non-saline swamp and lake sediments by the low levels of dissolved sulphate found in fresh water. Because of these differences in limiting factors, the three environments can be distinguished in both modern sediments and ancient rocks by plots of organic carbon, C against pyrite sulphur, S. Values of the C:S ratio based on theoretical calculations indicate that worldwide the bulk of organic matter burial has shifted considerably between these environments over Phanerozoic time.</description><subject>Carbon</subject><subject>Euxinia</subject><subject>Fresh water</subject><subject>Iron mining</subject><subject>Marine sediments</subject><subject>Pyrites</subject><subject>Reactivity</subject><subject>Sea water</subject><subject>Sediments</subject><subject>Sulfur</subject><issn>1364-503X</issn><issn>0080-4614</issn><issn>1471-2962</issn><issn>2054-0272</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LHDEUhofSQq3trRdezQ_orDk5yXzcFMSPVlAsaosgEjIziZtldzIkmZb115vslqKUepPkfDznPXmzbA_IDEhTHzgf5Ayams8IodWbbAdYBQVtSvo2vrFkBSd4-z774P2CEICS053s5_W0HOcyqPxK9VMXjB0-55fuQQ6myy9kCMrlx6qzq9F6k6q5HPr8-9qZiJxat5Kb5F3KHhvfTd7H-P5j9k7LpVef_ty72Y_Tk5ujb8X55dezo8PzQjJeh0Ii8rptZcXatoSq121JSqxQoe5JoyjShgCSeHSt1AoZY3Uvmaw049BrhrvZbDu3c9Z7p7QYnVlJtxZARHJFJFdEckUkVyKAW8DZdVzMdkaFtVjYyQ0x_D_lX6Ourm8OoUH2C4Eb4AiC1AiEUQQmHs24GZcaRGwQxvtJiU3bS5l_Vfe3qgsfrPv7M6wqQmPxYFucm4f5b-OUeLFbDMY4LOltlCiPxJdXiSTe2SGoITznhJ6WSzH2Gp8AVRm90w</recordid><startdate>19850731</startdate><enddate>19850731</enddate><creator>Berner, R. A.</creator><creator>De Leeuw, J. W.</creator><creator>Spiro, B.</creator><creator>Murchison, D. G.</creator><creator>Eglinton, G.</creator><general>The Royal Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19850731</creationdate><title>Sulphate Reduction, Organic Matter Decomposition and Pyrite Formation [and Discussion]</title><author>Berner, R. A. ; De Leeuw, J. W. ; Spiro, B. ; Murchison, D. G. ; Eglinton, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a458t-a3358bba74bb617dfb606373e3fd09e23290130901cbafe34448da4a7f451df43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Carbon</topic><topic>Euxinia</topic><topic>Fresh water</topic><topic>Iron mining</topic><topic>Marine sediments</topic><topic>Pyrites</topic><topic>Reactivity</topic><topic>Sea water</topic><topic>Sediments</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berner, R. A.</creatorcontrib><creatorcontrib>De Leeuw, J. W.</creatorcontrib><creatorcontrib>Spiro, B.</creatorcontrib><creatorcontrib>Murchison, D. G.</creatorcontrib><creatorcontrib>Eglinton, G.</creatorcontrib><collection>CrossRef</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berner, R. A.</au><au>De Leeuw, J. W.</au><au>Spiro, B.</au><au>Murchison, D. G.</au><au>Eglinton, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sulphate Reduction, Organic Matter Decomposition and Pyrite Formation [and Discussion]</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences</jtitle><stitle>Phil. Trans. R. Soc. Lond. A</stitle><date>1985-07-31</date><risdate>1985</risdate><volume>315</volume><issue>1531</issue><spage>25</spage><epage>38</epage><pages>25-38</pages><issn>1364-503X</issn><issn>0080-4614</issn><eissn>1471-2962</eissn><eissn>2054-0272</eissn><abstract>Laboratory, field, and theoretical studies have shown that the rate of bacterial sulphate reduction during early diagenesis depends primarily on the reactivity of sedimentary organic matter whose decomposition follows first-order kinetics, with rate constants varying over six orders of magnitude. Decay rates decrease with decreasing sediment burial rate and, for a given sediment, with depth, because of the successive utilization by bacteria of less and less reactive organic compounds. High burial (and bioturbation) rates enable reactive compounds to become available for sulphate reduction, at depth, which otherwise would be destroyed by molecular oxygen at or above the sediment--water interface. An important consequence of bacterial sulphate reduction is the formation of sedimentary pyrite, FeS$_{2}$. In normal marine sediments (those deposited in oxygenated bottom waters) pyrite formation is limited by the concentration and reactivity of organic matter, whereas in euxinic (sulphidic) basins pyrite is limited by the abundance and reactivity of detrital iron minerals, and in non-saline swamp and lake sediments by the low levels of dissolved sulphate found in fresh water. Because of these differences in limiting factors, the three environments can be distinguished in both modern sediments and ancient rocks by plots of organic carbon, C against pyrite sulphur, S. Values of the C:S ratio based on theoretical calculations indicate that worldwide the bulk of organic matter burial has shifted considerably between these environments over Phanerozoic time.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rsta.1985.0027</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences, 1985-07, Vol.315 (1531), p.25-38
issn 1364-503X
0080-4614
1471-2962
2054-0272
language eng
recordid cdi_royalsociety_journals_10_1098_rsta_1985_0027
source Jstor Complete Legacy; JSTOR Mathematics & Statistics
subjects Carbon
Euxinia
Fresh water
Iron mining
Marine sediments
Pyrites
Reactivity
Sea water
Sediments
Sulfur
title Sulphate Reduction, Organic Matter Decomposition and Pyrite Formation [and Discussion]
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sulphate%20Reduction,%20Organic%20Matter%20Decomposition%20and%20Pyrite%20Formation%20%5Band%20Discussion%5D&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical%20and%20physical%20sciences&rft.au=Berner,%20R.%20A.&rft.date=1985-07-31&rft.volume=315&rft.issue=1531&rft.spage=25&rft.epage=38&rft.pages=25-38&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.1985.0027&rft_dat=%3Cjstor_royal%3E37702%3C/jstor_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=37702&rfr_iscdi=true