Evolution and Subsidence of Early Precambrian Sedimentary Basins [and Discussion]

Many of the models for modern sedimentary basins postulate two-stage subsidence; a rapid initial subsidence due to thinning or loading of the crust, followed by a more protracted thermal stage as the lithosphere, which is thinned during the initial stage, relaxes to equilibrium thickness. The geolog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences 1982-05, Vol.305 (1489), p.225-247
Hauptverfasser: Bickle, M. J., Eriksson, K. A., Roberts, D. G., Hastings, D., Chadwick, B., Clarke, A. M., Ziegler, P. A., Osmaston, M. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 247
container_issue 1489
container_start_page 225
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences
container_volume 305
creator Bickle, M. J.
Eriksson, K. A.
Roberts, D. G.
Hastings, D.
Chadwick, B.
Clarke, A. M.
Ziegler, P. A.
Osmaston, M. F.
description Many of the models for modern sedimentary basins postulate two-stage subsidence; a rapid initial subsidence due to thinning or loading of the crust, followed by a more protracted thermal stage as the lithosphere, which is thinned during the initial stage, relaxes to equilibrium thickness. The geology of a number of Archaean green-stone belts and early Proterozoic cratonic basins in South Africa may be explained by such a model. Rapidly erupted shallow marine or subaerial volcanic rocks predominate in the lower parts of sedimentary--volcanic sequences. These are thought to relate to initial subsidence as (1) accommodation of relatively thick volcanic sequences requires substantial and rapid subsidence, and (2) marginal uplift following these early volcanic intervals is consistent with viscous relaxation following the initial elastic response of the lithosphere to localized loading. Sedimentary sequences overlying initial volcanic dominated intervals may have been deposited during the ensuing phase of more widespread subsidence related to thermal relaxation of the thinned lithosphere. If so, sediment-filled subsidence of ca. 5.5 km in greenstone terrains at 3.5 and 2.6 Ga and of 7-10 km in cratonic shelf basins between 2.7 and 2.1 Ga require increases of lithosphere thickness between ca. 60 and 90 km. These minimum estimates of early Precambrian lithosphere thickness, although crude, are similar to estimates of present lithosphere thickness. In some early Precambrian basins, the cause of subsidence may have been crustal extension with development of faulted grabens that evolved into continental margins, but in cratonic shelf basins faulting did not occur during or after the initial subsidence, and some less obvious causal mechanism must be sought.
doi_str_mv 10.1098/rsta.1982.0035
format Article
fullrecord <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rsta_1982_0035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>37251</jstor_id><sourcerecordid>37251</sourcerecordid><originalsourceid>FETCH-LOGICAL-a557t-19af15d23646fa18fb677f02fe5bf62f6a1fa277c7a68553a2a304462217163b3</originalsourceid><addsrcrecordid>eNp9UUuL1TAULj7AcZytC1ddues1J2keXck4XkdhwMcdQRAJaZs4ufQmNWlnqL_etBVxEGcVwvke5_tOlj0FtAFUiRchDmoDlcAbhAi9lx1ByaHAFcP3s5OKCyRoiQiIsnqQZoSVBUXky6PscYx7hAAYxUfZx-2178bBepcr1-a7sY621a7RuTf5VoVuyj8E3ahDHaxy-U639qDdoMKUv1LRuph_nXmvbWzGGJPMtyfZQ6O6qE9-v8fZ5zfby7O3xcX783dnpxeFopQPBVTKAG1x2osZBcLUjHODsNG0NgwbpsAozHnDFROUEoUVQWXJMAYOjNTkOHu-6vbB_xh1HOQhLaG7TjntxyiBUgwpfwJuVmATfIxBG9kHe0gJJCA5NynnJuXcpJybTASyEoKfUgLfWD1Mcu_H4NL3_6x4F-vT7vIUKlJeE0QtlKKSSBBAnBCE5E_bL3IzQCaAtDGOWi6w2zb_uj5bXfdx8OFPMsIxnZO_XIdX9vvVjQ1a3tptkWq8G9JBF9fFD2Mqzdh1sm9NUkB3KvipTxp_c8kvPmLL1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15521031</pqid></control><display><type>article</type><title>Evolution and Subsidence of Early Precambrian Sedimentary Basins [and Discussion]</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Bickle, M. J. ; Eriksson, K. A. ; Roberts, D. G. ; Hastings, D. ; Chadwick, B. ; Clarke, A. M. ; Ziegler, P. A. ; Osmaston, M. F.</creator><creatorcontrib>Bickle, M. J. ; Eriksson, K. A. ; Roberts, D. G. ; Hastings, D. ; Chadwick, B. ; Clarke, A. M. ; Ziegler, P. A. ; Osmaston, M. F.</creatorcontrib><description>Many of the models for modern sedimentary basins postulate two-stage subsidence; a rapid initial subsidence due to thinning or loading of the crust, followed by a more protracted thermal stage as the lithosphere, which is thinned during the initial stage, relaxes to equilibrium thickness. The geology of a number of Archaean green-stone belts and early Proterozoic cratonic basins in South Africa may be explained by such a model. Rapidly erupted shallow marine or subaerial volcanic rocks predominate in the lower parts of sedimentary--volcanic sequences. These are thought to relate to initial subsidence as (1) accommodation of relatively thick volcanic sequences requires substantial and rapid subsidence, and (2) marginal uplift following these early volcanic intervals is consistent with viscous relaxation following the initial elastic response of the lithosphere to localized loading. Sedimentary sequences overlying initial volcanic dominated intervals may have been deposited during the ensuing phase of more widespread subsidence related to thermal relaxation of the thinned lithosphere. If so, sediment-filled subsidence of ca. 5.5 km in greenstone terrains at 3.5 and 2.6 Ga and of 7-10 km in cratonic shelf basins between 2.7 and 2.1 Ga require increases of lithosphere thickness between ca. 60 and 90 km. These minimum estimates of early Precambrian lithosphere thickness, although crude, are similar to estimates of present lithosphere thickness. In some early Precambrian basins, the cause of subsidence may have been crustal extension with development of faulted grabens that evolved into continental margins, but in cratonic shelf basins faulting did not occur during or after the initial subsidence, and some less obvious causal mechanism must be sought.</description><identifier>ISSN: 1364-503X</identifier><identifier>ISSN: 0080-4614</identifier><identifier>ISBN: 9780854031849</identifier><identifier>ISBN: 0854031847</identifier><identifier>EISSN: 1471-2962</identifier><identifier>EISSN: 2054-0272</identifier><identifier>DOI: 10.1098/rsta.1982.0035</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Basement rocks ; Braiding ; Geologic supergroups ; Intracontinental Basins ; Lithospheres ; Marine ; Precambrian strata ; Sediments ; Subsidence ; Tectonics ; Volcanic rocks ; Volcanoes</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences, 1982-05, Vol.305 (1489), p.225-247</ispartof><rights>Copyright 1982 The Royal Society</rights><rights>Scanned images copyright © 2017, Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a557t-19af15d23646fa18fb677f02fe5bf62f6a1fa277c7a68553a2a304462217163b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/37251$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/37251$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,801,830,27907,27908,58000,58004,58233,58237</link.rule.ids></links><search><creatorcontrib>Bickle, M. J.</creatorcontrib><creatorcontrib>Eriksson, K. A.</creatorcontrib><creatorcontrib>Roberts, D. G.</creatorcontrib><creatorcontrib>Hastings, D.</creatorcontrib><creatorcontrib>Chadwick, B.</creatorcontrib><creatorcontrib>Clarke, A. M.</creatorcontrib><creatorcontrib>Ziegler, P. A.</creatorcontrib><creatorcontrib>Osmaston, M. F.</creatorcontrib><title>Evolution and Subsidence of Early Precambrian Sedimentary Basins [and Discussion]</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences</title><addtitle>Phil. Trans. R. Soc. Lond. A</addtitle><description>Many of the models for modern sedimentary basins postulate two-stage subsidence; a rapid initial subsidence due to thinning or loading of the crust, followed by a more protracted thermal stage as the lithosphere, which is thinned during the initial stage, relaxes to equilibrium thickness. The geology of a number of Archaean green-stone belts and early Proterozoic cratonic basins in South Africa may be explained by such a model. Rapidly erupted shallow marine or subaerial volcanic rocks predominate in the lower parts of sedimentary--volcanic sequences. These are thought to relate to initial subsidence as (1) accommodation of relatively thick volcanic sequences requires substantial and rapid subsidence, and (2) marginal uplift following these early volcanic intervals is consistent with viscous relaxation following the initial elastic response of the lithosphere to localized loading. Sedimentary sequences overlying initial volcanic dominated intervals may have been deposited during the ensuing phase of more widespread subsidence related to thermal relaxation of the thinned lithosphere. If so, sediment-filled subsidence of ca. 5.5 km in greenstone terrains at 3.5 and 2.6 Ga and of 7-10 km in cratonic shelf basins between 2.7 and 2.1 Ga require increases of lithosphere thickness between ca. 60 and 90 km. These minimum estimates of early Precambrian lithosphere thickness, although crude, are similar to estimates of present lithosphere thickness. In some early Precambrian basins, the cause of subsidence may have been crustal extension with development of faulted grabens that evolved into continental margins, but in cratonic shelf basins faulting did not occur during or after the initial subsidence, and some less obvious causal mechanism must be sought.</description><subject>Basement rocks</subject><subject>Braiding</subject><subject>Geologic supergroups</subject><subject>Intracontinental Basins</subject><subject>Lithospheres</subject><subject>Marine</subject><subject>Precambrian strata</subject><subject>Sediments</subject><subject>Subsidence</subject><subject>Tectonics</subject><subject>Volcanic rocks</subject><subject>Volcanoes</subject><issn>1364-503X</issn><issn>0080-4614</issn><issn>1471-2962</issn><issn>2054-0272</issn><isbn>9780854031849</isbn><isbn>0854031847</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><recordid>eNp9UUuL1TAULj7AcZytC1ddues1J2keXck4XkdhwMcdQRAJaZs4ufQmNWlnqL_etBVxEGcVwvke5_tOlj0FtAFUiRchDmoDlcAbhAi9lx1ByaHAFcP3s5OKCyRoiQiIsnqQZoSVBUXky6PscYx7hAAYxUfZx-2178bBepcr1-a7sY621a7RuTf5VoVuyj8E3ahDHaxy-U639qDdoMKUv1LRuph_nXmvbWzGGJPMtyfZQ6O6qE9-v8fZ5zfby7O3xcX783dnpxeFopQPBVTKAG1x2osZBcLUjHODsNG0NgwbpsAozHnDFROUEoUVQWXJMAYOjNTkOHu-6vbB_xh1HOQhLaG7TjntxyiBUgwpfwJuVmATfIxBG9kHe0gJJCA5NynnJuXcpJybTASyEoKfUgLfWD1Mcu_H4NL3_6x4F-vT7vIUKlJeE0QtlKKSSBBAnBCE5E_bL3IzQCaAtDGOWi6w2zb_uj5bXfdx8OFPMsIxnZO_XIdX9vvVjQ1a3tptkWq8G9JBF9fFD2Mqzdh1sm9NUkB3KvipTxp_c8kvPmLL1w</recordid><startdate>19820505</startdate><enddate>19820505</enddate><creator>Bickle, M. J.</creator><creator>Eriksson, K. A.</creator><creator>Roberts, D. G.</creator><creator>Hastings, D.</creator><creator>Chadwick, B.</creator><creator>Clarke, A. M.</creator><creator>Ziegler, P. A.</creator><creator>Osmaston, M. F.</creator><general>The Royal Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>19820505</creationdate><title>Evolution and Subsidence of Early Precambrian Sedimentary Basins [and Discussion]</title><author>Bickle, M. J. ; Eriksson, K. A. ; Roberts, D. G. ; Hastings, D. ; Chadwick, B. ; Clarke, A. M. ; Ziegler, P. A. ; Osmaston, M. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a557t-19af15d23646fa18fb677f02fe5bf62f6a1fa277c7a68553a2a304462217163b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><topic>Basement rocks</topic><topic>Braiding</topic><topic>Geologic supergroups</topic><topic>Intracontinental Basins</topic><topic>Lithospheres</topic><topic>Marine</topic><topic>Precambrian strata</topic><topic>Sediments</topic><topic>Subsidence</topic><topic>Tectonics</topic><topic>Volcanic rocks</topic><topic>Volcanoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bickle, M. J.</creatorcontrib><creatorcontrib>Eriksson, K. A.</creatorcontrib><creatorcontrib>Roberts, D. G.</creatorcontrib><creatorcontrib>Hastings, D.</creatorcontrib><creatorcontrib>Chadwick, B.</creatorcontrib><creatorcontrib>Clarke, A. M.</creatorcontrib><creatorcontrib>Ziegler, P. A.</creatorcontrib><creatorcontrib>Osmaston, M. F.</creatorcontrib><collection>CrossRef</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bickle, M. J.</au><au>Eriksson, K. A.</au><au>Roberts, D. G.</au><au>Hastings, D.</au><au>Chadwick, B.</au><au>Clarke, A. M.</au><au>Ziegler, P. A.</au><au>Osmaston, M. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution and Subsidence of Early Precambrian Sedimentary Basins [and Discussion]</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences</jtitle><stitle>Phil. Trans. R. Soc. Lond. A</stitle><date>1982-05-05</date><risdate>1982</risdate><volume>305</volume><issue>1489</issue><spage>225</spage><epage>247</epage><pages>225-247</pages><issn>1364-503X</issn><issn>0080-4614</issn><eissn>1471-2962</eissn><eissn>2054-0272</eissn><isbn>9780854031849</isbn><isbn>0854031847</isbn><abstract>Many of the models for modern sedimentary basins postulate two-stage subsidence; a rapid initial subsidence due to thinning or loading of the crust, followed by a more protracted thermal stage as the lithosphere, which is thinned during the initial stage, relaxes to equilibrium thickness. The geology of a number of Archaean green-stone belts and early Proterozoic cratonic basins in South Africa may be explained by such a model. Rapidly erupted shallow marine or subaerial volcanic rocks predominate in the lower parts of sedimentary--volcanic sequences. These are thought to relate to initial subsidence as (1) accommodation of relatively thick volcanic sequences requires substantial and rapid subsidence, and (2) marginal uplift following these early volcanic intervals is consistent with viscous relaxation following the initial elastic response of the lithosphere to localized loading. Sedimentary sequences overlying initial volcanic dominated intervals may have been deposited during the ensuing phase of more widespread subsidence related to thermal relaxation of the thinned lithosphere. If so, sediment-filled subsidence of ca. 5.5 km in greenstone terrains at 3.5 and 2.6 Ga and of 7-10 km in cratonic shelf basins between 2.7 and 2.1 Ga require increases of lithosphere thickness between ca. 60 and 90 km. These minimum estimates of early Precambrian lithosphere thickness, although crude, are similar to estimates of present lithosphere thickness. In some early Precambrian basins, the cause of subsidence may have been crustal extension with development of faulted grabens that evolved into continental margins, but in cratonic shelf basins faulting did not occur during or after the initial subsidence, and some less obvious causal mechanism must be sought.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rsta.1982.0035</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences, 1982-05, Vol.305 (1489), p.225-247
issn 1364-503X
0080-4614
1471-2962
2054-0272
language eng
recordid cdi_royalsociety_journals_10_1098_rsta_1982_0035
source JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Basement rocks
Braiding
Geologic supergroups
Intracontinental Basins
Lithospheres
Marine
Precambrian strata
Sediments
Subsidence
Tectonics
Volcanic rocks
Volcanoes
title Evolution and Subsidence of Early Precambrian Sedimentary Basins [and Discussion]
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A32%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20and%20Subsidence%20of%20Early%20Precambrian%20Sedimentary%20Basins%20%5Band%20Discussion%5D&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical%20and%20physical%20sciences&rft.au=Bickle,%20M.%20J.&rft.date=1982-05-05&rft.volume=305&rft.issue=1489&rft.spage=225&rft.epage=247&rft.pages=225-247&rft.issn=1364-503X&rft.eissn=1471-2962&rft.isbn=9780854031849&rft.isbn_list=0854031847&rft_id=info:doi/10.1098/rsta.1982.0035&rft_dat=%3Cjstor_royal%3E37251%3C/jstor_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15521031&rft_id=info:pmid/&rft_jstor_id=37251&rfr_iscdi=true