Oceanic protists with different forms of acquired phototrophy display contrasting biogeographies and abundance

This first comprehensive analysis of the global biogeography of marine protistan plankton with acquired phototrophy shows these mixotrophic organisms to be ubiquitous and abundant; however, their biogeography differs markedly between different functional groups. These mixotrophs, lacking a constitut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2017-08, Vol.284 (1860), p.20170664-20170664
Hauptverfasser: Leles, S. G., Mitra, A., Flynn, K. J., Stoecker, D. K., Hansen, P. J., Calbet, A., McManus, G. B., Sanders, R. W., Caron, D. A., Not, F., Hallegraeff, G. M., Pitta, P., Raven, J. A., Johnson, M. D., Glibert, P. M., Våge, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20170664
container_issue 1860
container_start_page 20170664
container_title Proceedings of the Royal Society. B, Biological sciences
container_volume 284
creator Leles, S. G.
Mitra, A.
Flynn, K. J.
Stoecker, D. K.
Hansen, P. J.
Calbet, A.
McManus, G. B.
Sanders, R. W.
Caron, D. A.
Not, F.
Hallegraeff, G. M.
Pitta, P.
Raven, J. A.
Johnson, M. D.
Glibert, P. M.
Våge, S.
description This first comprehensive analysis of the global biogeography of marine protistan plankton with acquired phototrophy shows these mixotrophic organisms to be ubiquitous and abundant; however, their biogeography differs markedly between different functional groups. These mixotrophs, lacking a constitutive capacity for photosynthesis (i.e. non-constitutive mixotrophs, NCMs), acquire their phototrophic potential through either integration of prey-plastids or through endosymbiotic associations with photosynthetic microbes. Analysis of field data reveals that 40–60% of plankton traditionally labelled as (non-phototrophic) microzooplankton are actually NCMs, employing acquired phototrophy in addition to phagotrophy. Specialist NCMs acquire chloroplasts or endosymbionts from specific prey, while generalist NCMs obtain chloroplasts from a variety of prey. These contrasting functional types of NCMs exhibit distinct seasonal and spatial global distribution patterns. Mixotrophs reliant on ‘stolen’ chloroplasts, controlled by prey diversity and abundance, dominate in high-biomass areas. Mixotrophs harbouring intact symbionts are present in all waters and dominate particularly in oligotrophic open ocean systems. The contrasting temporal and spatial patterns of distribution of different mixotroph functional types across the oceanic provinces, as revealed in this study, challenges traditional interpretations of marine food web structures. Mixotrophs with acquired phototrophy (NCMs) warrant greater recognition in marine research.
doi_str_mv 10.1098/rspb.2017.0664
format Article
fullrecord <record><control><sourceid>proquest_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rspb_2017_0664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1925896526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c596t-9aea5594355f6ae2fc8a42d56fb324cce5d28af965b5d0efa07e435fe2e7d0ef3</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxSMEokvhyhFF4gKH3dqO7dgXpLYCirRSER9ny3HGG5ddO7WTRctfj8MupS2Ck2XPb-a98SuK5xgtMJLiJKa-WRCE6wXinD4oZpjWeE4kow-LGZKczAVl5Kh4ktIVQkgywR4XR0TUXAjBZ4W_NKC9M2Ufw-DSkMrvbujK1lkLEfxQ2hA3qQy21OZ6dBHasu_CEIYY-m6XudSv9a40wQ9Rp8H5Vdm4sIKwirrvHKRS-7bUzehb7Q08LR5ZvU7w7HAeF1_fvf1yfjFfXr7_cH66nBsm-TCXGjRjklaMWa6BWCM0JS3jtqkINQZYS4S2krOGtQisRjVk2AKBerpXx8Wb_dx-bDbQGpjsrVUf3UbHnQraqbsV7zq1ClvFGK9qKfKA1_sB3b22i9Olmt5QJWvMBdvizL46iMVwPUIa1MYlA-u19hDGpLAkTGSvhGf05T30KozR56_IlKAVrysmM7XYUyaGlCLYGwcYqSl2NcWuptjVFHtueHF73Rv8d84Z-LYHYthlsWAcDLs_2p8-fzzbEkEdFhwpJCqMakqIUD9cf9ASVLmURlC_kLv6f9up_qf2jyV-AhRy4Tw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984367359</pqid></control><display><type>article</type><title>Oceanic protists with different forms of acquired phototrophy display contrasting biogeographies and abundance</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><creator>Leles, S. G. ; Mitra, A. ; Flynn, K. J. ; Stoecker, D. K. ; Hansen, P. J. ; Calbet, A. ; McManus, G. B. ; Sanders, R. W. ; Caron, D. A. ; Not, F. ; Hallegraeff, G. M. ; Pitta, P. ; Raven, J. A. ; Johnson, M. D. ; Glibert, P. M. ; Våge, S.</creator><creatorcontrib>Leles, S. G. ; Mitra, A. ; Flynn, K. J. ; Stoecker, D. K. ; Hansen, P. J. ; Calbet, A. ; McManus, G. B. ; Sanders, R. W. ; Caron, D. A. ; Not, F. ; Hallegraeff, G. M. ; Pitta, P. ; Raven, J. A. ; Johnson, M. D. ; Glibert, P. M. ; Våge, S.</creatorcontrib><description>This first comprehensive analysis of the global biogeography of marine protistan plankton with acquired phototrophy shows these mixotrophic organisms to be ubiquitous and abundant; however, their biogeography differs markedly between different functional groups. These mixotrophs, lacking a constitutive capacity for photosynthesis (i.e. non-constitutive mixotrophs, NCMs), acquire their phototrophic potential through either integration of prey-plastids or through endosymbiotic associations with photosynthetic microbes. Analysis of field data reveals that 40–60% of plankton traditionally labelled as (non-phototrophic) microzooplankton are actually NCMs, employing acquired phototrophy in addition to phagotrophy. Specialist NCMs acquire chloroplasts or endosymbionts from specific prey, while generalist NCMs obtain chloroplasts from a variety of prey. These contrasting functional types of NCMs exhibit distinct seasonal and spatial global distribution patterns. Mixotrophs reliant on ‘stolen’ chloroplasts, controlled by prey diversity and abundance, dominate in high-biomass areas. Mixotrophs harbouring intact symbionts are present in all waters and dominate particularly in oligotrophic open ocean systems. The contrasting temporal and spatial patterns of distribution of different mixotroph functional types across the oceanic provinces, as revealed in this study, challenges traditional interpretations of marine food web structures. Mixotrophs with acquired phototrophy (NCMs) warrant greater recognition in marine research.</description><edition>Royal Society (Great Britain)</edition><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.2017.0664</identifier><identifier>PMID: 28768886</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Abundance ; Acquired Phototrophy ; Biogeography ; Chloroplasts ; Chloroplasts - physiology ; Data processing ; Distribution patterns ; Ecology ; Endosymbionts ; Environmental Sciences ; Eukaryota ; Food Chain ; Food chains ; Food webs ; Functional groups ; Kleptoplasty ; Marine Protists ; Mixotrophy ; Oceans and Seas ; Photosymbiosis ; Photosynthesis ; Phototrophic Processes ; Phototrophy ; Plankton ; Plankton - physiology ; Plastids ; Prey ; Seasonal distribution ; Spatial distribution ; Spatio-Temporal Analysis ; Symbionts ; Symbiosis</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2017-08, Vol.284 (1860), p.20170664-20170664</ispartof><rights>2017 The Author(s)</rights><rights>2017 The Author(s).</rights><rights>Copyright The Royal Society Publishing Aug 16, 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2017 The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c596t-9aea5594355f6ae2fc8a42d56fb324cce5d28af965b5d0efa07e435fe2e7d0ef3</citedby><cites>FETCH-LOGICAL-c596t-9aea5594355f6ae2fc8a42d56fb324cce5d28af965b5d0efa07e435fe2e7d0ef3</cites><orcidid>0000-0001-8464-7343 ; 0000-0001-7264-1059 ; 0000-0002-2768-1286 ; 0000-0001-5572-9331 ; 0000-0002-2789-3297 ; 0000-0003-1069-212X ; 0000-0001-6913-5884 ; 0000-0001-5690-1674 ; 0000-0002-9342-195X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5563798/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5563798/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28768886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03971685$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Leles, S. G.</creatorcontrib><creatorcontrib>Mitra, A.</creatorcontrib><creatorcontrib>Flynn, K. J.</creatorcontrib><creatorcontrib>Stoecker, D. K.</creatorcontrib><creatorcontrib>Hansen, P. J.</creatorcontrib><creatorcontrib>Calbet, A.</creatorcontrib><creatorcontrib>McManus, G. B.</creatorcontrib><creatorcontrib>Sanders, R. W.</creatorcontrib><creatorcontrib>Caron, D. A.</creatorcontrib><creatorcontrib>Not, F.</creatorcontrib><creatorcontrib>Hallegraeff, G. M.</creatorcontrib><creatorcontrib>Pitta, P.</creatorcontrib><creatorcontrib>Raven, J. A.</creatorcontrib><creatorcontrib>Johnson, M. D.</creatorcontrib><creatorcontrib>Glibert, P. M.</creatorcontrib><creatorcontrib>Våge, S.</creatorcontrib><title>Oceanic protists with different forms of acquired phototrophy display contrasting biogeographies and abundance</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc. R. Soc. B</addtitle><addtitle>Proc Biol Sci</addtitle><description>This first comprehensive analysis of the global biogeography of marine protistan plankton with acquired phototrophy shows these mixotrophic organisms to be ubiquitous and abundant; however, their biogeography differs markedly between different functional groups. These mixotrophs, lacking a constitutive capacity for photosynthesis (i.e. non-constitutive mixotrophs, NCMs), acquire their phototrophic potential through either integration of prey-plastids or through endosymbiotic associations with photosynthetic microbes. Analysis of field data reveals that 40–60% of plankton traditionally labelled as (non-phototrophic) microzooplankton are actually NCMs, employing acquired phototrophy in addition to phagotrophy. Specialist NCMs acquire chloroplasts or endosymbionts from specific prey, while generalist NCMs obtain chloroplasts from a variety of prey. These contrasting functional types of NCMs exhibit distinct seasonal and spatial global distribution patterns. Mixotrophs reliant on ‘stolen’ chloroplasts, controlled by prey diversity and abundance, dominate in high-biomass areas. Mixotrophs harbouring intact symbionts are present in all waters and dominate particularly in oligotrophic open ocean systems. The contrasting temporal and spatial patterns of distribution of different mixotroph functional types across the oceanic provinces, as revealed in this study, challenges traditional interpretations of marine food web structures. Mixotrophs with acquired phototrophy (NCMs) warrant greater recognition in marine research.</description><subject>Abundance</subject><subject>Acquired Phototrophy</subject><subject>Biogeography</subject><subject>Chloroplasts</subject><subject>Chloroplasts - physiology</subject><subject>Data processing</subject><subject>Distribution patterns</subject><subject>Ecology</subject><subject>Endosymbionts</subject><subject>Environmental Sciences</subject><subject>Eukaryota</subject><subject>Food Chain</subject><subject>Food chains</subject><subject>Food webs</subject><subject>Functional groups</subject><subject>Kleptoplasty</subject><subject>Marine Protists</subject><subject>Mixotrophy</subject><subject>Oceans and Seas</subject><subject>Photosymbiosis</subject><subject>Photosynthesis</subject><subject>Phototrophic Processes</subject><subject>Phototrophy</subject><subject>Plankton</subject><subject>Plankton - physiology</subject><subject>Plastids</subject><subject>Prey</subject><subject>Seasonal distribution</subject><subject>Spatial distribution</subject><subject>Spatio-Temporal Analysis</subject><subject>Symbionts</subject><subject>Symbiosis</subject><issn>0962-8452</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1v1DAQxSMEokvhyhFF4gKH3dqO7dgXpLYCirRSER9ny3HGG5ddO7WTRctfj8MupS2Ck2XPb-a98SuK5xgtMJLiJKa-WRCE6wXinD4oZpjWeE4kow-LGZKczAVl5Kh4ktIVQkgywR4XR0TUXAjBZ4W_NKC9M2Ufw-DSkMrvbujK1lkLEfxQ2hA3qQy21OZ6dBHasu_CEIYY-m6XudSv9a40wQ9Rp8H5Vdm4sIKwirrvHKRS-7bUzehb7Q08LR5ZvU7w7HAeF1_fvf1yfjFfXr7_cH66nBsm-TCXGjRjklaMWa6BWCM0JS3jtqkINQZYS4S2krOGtQisRjVk2AKBerpXx8Wb_dx-bDbQGpjsrVUf3UbHnQraqbsV7zq1ClvFGK9qKfKA1_sB3b22i9Olmt5QJWvMBdvizL46iMVwPUIa1MYlA-u19hDGpLAkTGSvhGf05T30KozR56_IlKAVrysmM7XYUyaGlCLYGwcYqSl2NcWuptjVFHtueHF73Rv8d84Z-LYHYthlsWAcDLs_2p8-fzzbEkEdFhwpJCqMakqIUD9cf9ASVLmURlC_kLv6f9up_qf2jyV-AhRy4Tw</recordid><startdate>20170816</startdate><enddate>20170816</enddate><creator>Leles, S. G.</creator><creator>Mitra, A.</creator><creator>Flynn, K. J.</creator><creator>Stoecker, D. K.</creator><creator>Hansen, P. J.</creator><creator>Calbet, A.</creator><creator>McManus, G. B.</creator><creator>Sanders, R. W.</creator><creator>Caron, D. A.</creator><creator>Not, F.</creator><creator>Hallegraeff, G. M.</creator><creator>Pitta, P.</creator><creator>Raven, J. A.</creator><creator>Johnson, M. D.</creator><creator>Glibert, P. M.</creator><creator>Våge, S.</creator><general>The Royal Society</general><general>The Royal Society Publishing</general><general>Royal Society, The</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8464-7343</orcidid><orcidid>https://orcid.org/0000-0001-7264-1059</orcidid><orcidid>https://orcid.org/0000-0002-2768-1286</orcidid><orcidid>https://orcid.org/0000-0001-5572-9331</orcidid><orcidid>https://orcid.org/0000-0002-2789-3297</orcidid><orcidid>https://orcid.org/0000-0003-1069-212X</orcidid><orcidid>https://orcid.org/0000-0001-6913-5884</orcidid><orcidid>https://orcid.org/0000-0001-5690-1674</orcidid><orcidid>https://orcid.org/0000-0002-9342-195X</orcidid></search><sort><creationdate>20170816</creationdate><title>Oceanic protists with different forms of acquired phototrophy display contrasting biogeographies and abundance</title><author>Leles, S. G. ; Mitra, A. ; Flynn, K. J. ; Stoecker, D. K. ; Hansen, P. J. ; Calbet, A. ; McManus, G. B. ; Sanders, R. W. ; Caron, D. A. ; Not, F. ; Hallegraeff, G. M. ; Pitta, P. ; Raven, J. A. ; Johnson, M. D. ; Glibert, P. M. ; Våge, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c596t-9aea5594355f6ae2fc8a42d56fb324cce5d28af965b5d0efa07e435fe2e7d0ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Abundance</topic><topic>Acquired Phototrophy</topic><topic>Biogeography</topic><topic>Chloroplasts</topic><topic>Chloroplasts - physiology</topic><topic>Data processing</topic><topic>Distribution patterns</topic><topic>Ecology</topic><topic>Endosymbionts</topic><topic>Environmental Sciences</topic><topic>Eukaryota</topic><topic>Food Chain</topic><topic>Food chains</topic><topic>Food webs</topic><topic>Functional groups</topic><topic>Kleptoplasty</topic><topic>Marine Protists</topic><topic>Mixotrophy</topic><topic>Oceans and Seas</topic><topic>Photosymbiosis</topic><topic>Photosynthesis</topic><topic>Phototrophic Processes</topic><topic>Phototrophy</topic><topic>Plankton</topic><topic>Plankton - physiology</topic><topic>Plastids</topic><topic>Prey</topic><topic>Seasonal distribution</topic><topic>Spatial distribution</topic><topic>Spatio-Temporal Analysis</topic><topic>Symbionts</topic><topic>Symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leles, S. G.</creatorcontrib><creatorcontrib>Mitra, A.</creatorcontrib><creatorcontrib>Flynn, K. J.</creatorcontrib><creatorcontrib>Stoecker, D. K.</creatorcontrib><creatorcontrib>Hansen, P. J.</creatorcontrib><creatorcontrib>Calbet, A.</creatorcontrib><creatorcontrib>McManus, G. B.</creatorcontrib><creatorcontrib>Sanders, R. W.</creatorcontrib><creatorcontrib>Caron, D. A.</creatorcontrib><creatorcontrib>Not, F.</creatorcontrib><creatorcontrib>Hallegraeff, G. M.</creatorcontrib><creatorcontrib>Pitta, P.</creatorcontrib><creatorcontrib>Raven, J. A.</creatorcontrib><creatorcontrib>Johnson, M. D.</creatorcontrib><creatorcontrib>Glibert, P. M.</creatorcontrib><creatorcontrib>Våge, S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leles, S. G.</au><au>Mitra, A.</au><au>Flynn, K. J.</au><au>Stoecker, D. K.</au><au>Hansen, P. J.</au><au>Calbet, A.</au><au>McManus, G. B.</au><au>Sanders, R. W.</au><au>Caron, D. A.</au><au>Not, F.</au><au>Hallegraeff, G. M.</au><au>Pitta, P.</au><au>Raven, J. A.</au><au>Johnson, M. D.</au><au>Glibert, P. M.</au><au>Våge, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oceanic protists with different forms of acquired phototrophy display contrasting biogeographies and abundance</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><stitle>Proc. R. Soc. B</stitle><addtitle>Proc Biol Sci</addtitle><date>2017-08-16</date><risdate>2017</risdate><volume>284</volume><issue>1860</issue><spage>20170664</spage><epage>20170664</epage><pages>20170664-20170664</pages><issn>0962-8452</issn><eissn>1471-2954</eissn><abstract>This first comprehensive analysis of the global biogeography of marine protistan plankton with acquired phototrophy shows these mixotrophic organisms to be ubiquitous and abundant; however, their biogeography differs markedly between different functional groups. These mixotrophs, lacking a constitutive capacity for photosynthesis (i.e. non-constitutive mixotrophs, NCMs), acquire their phototrophic potential through either integration of prey-plastids or through endosymbiotic associations with photosynthetic microbes. Analysis of field data reveals that 40–60% of plankton traditionally labelled as (non-phototrophic) microzooplankton are actually NCMs, employing acquired phototrophy in addition to phagotrophy. Specialist NCMs acquire chloroplasts or endosymbionts from specific prey, while generalist NCMs obtain chloroplasts from a variety of prey. These contrasting functional types of NCMs exhibit distinct seasonal and spatial global distribution patterns. Mixotrophs reliant on ‘stolen’ chloroplasts, controlled by prey diversity and abundance, dominate in high-biomass areas. Mixotrophs harbouring intact symbionts are present in all waters and dominate particularly in oligotrophic open ocean systems. The contrasting temporal and spatial patterns of distribution of different mixotroph functional types across the oceanic provinces, as revealed in this study, challenges traditional interpretations of marine food web structures. Mixotrophs with acquired phototrophy (NCMs) warrant greater recognition in marine research.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>28768886</pmid><doi>10.1098/rspb.2017.0664</doi><tpages>1</tpages><edition>Royal Society (Great Britain)</edition><orcidid>https://orcid.org/0000-0001-8464-7343</orcidid><orcidid>https://orcid.org/0000-0001-7264-1059</orcidid><orcidid>https://orcid.org/0000-0002-2768-1286</orcidid><orcidid>https://orcid.org/0000-0001-5572-9331</orcidid><orcidid>https://orcid.org/0000-0002-2789-3297</orcidid><orcidid>https://orcid.org/0000-0003-1069-212X</orcidid><orcidid>https://orcid.org/0000-0001-6913-5884</orcidid><orcidid>https://orcid.org/0000-0001-5690-1674</orcidid><orcidid>https://orcid.org/0000-0002-9342-195X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8452
ispartof Proceedings of the Royal Society. B, Biological sciences, 2017-08, Vol.284 (1860), p.20170664-20170664
issn 0962-8452
1471-2954
language eng
recordid cdi_royalsociety_journals_10_1098_rspb_2017_0664
source Jstor Complete Legacy; MEDLINE; PubMed Central
subjects Abundance
Acquired Phototrophy
Biogeography
Chloroplasts
Chloroplasts - physiology
Data processing
Distribution patterns
Ecology
Endosymbionts
Environmental Sciences
Eukaryota
Food Chain
Food chains
Food webs
Functional groups
Kleptoplasty
Marine Protists
Mixotrophy
Oceans and Seas
Photosymbiosis
Photosynthesis
Phototrophic Processes
Phototrophy
Plankton
Plankton - physiology
Plastids
Prey
Seasonal distribution
Spatial distribution
Spatio-Temporal Analysis
Symbionts
Symbiosis
title Oceanic protists with different forms of acquired phototrophy display contrasting biogeographies and abundance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oceanic%20protists%20with%20different%20forms%20of%20acquired%20phototrophy%20display%20contrasting%20biogeographies%20and%20abundance&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Leles,%20S.%20G.&rft.date=2017-08-16&rft.volume=284&rft.issue=1860&rft.spage=20170664&rft.epage=20170664&rft.pages=20170664-20170664&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.2017.0664&rft_dat=%3Cproquest_royal%3E1925896526%3C/proquest_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1984367359&rft_id=info:pmid/28768886&rfr_iscdi=true