Antagonistic coevolution between quantitative and Mendelian traits

Coevolution is relentlessly creating and maintaining biodiversity and therefore has been a central topic in evolutionary biology. Previous theoretical studies have mostly considered coevolution between genetically symmetric traits (i.e. coevolution between two continuous quantitative traits or two d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2016-03, Vol.283 (1827), p.20152926-20152926
Hauptverfasser: Yamamichi, Masato, Ellner, Stephen P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20152926
container_issue 1827
container_start_page 20152926
container_title Proceedings of the Royal Society. B, Biological sciences
container_volume 283
creator Yamamichi, Masato
Ellner, Stephen P.
description Coevolution is relentlessly creating and maintaining biodiversity and therefore has been a central topic in evolutionary biology. Previous theoretical studies have mostly considered coevolution between genetically symmetric traits (i.e. coevolution between two continuous quantitative traits or two discrete Mendelian traits). However, recent empirical evidence indicates that coevolution can occur between genetically asymmetric traits (e.g. between quantitative and Mendelian traits). We examine consequences of antagonistic coevolution mediated by a quantitative predator trait and a Mendelian prey trait, such that predation is more intense with decreased phenotypic distance between their traits (phenotype matching). This antagonistic coevolution produces a complex pattern of bifurcations with bistability (initial state dependence) in a two-dimensional model for trait coevolution. Furthermore, with eco-evolutionary dynamics (so that the trait evolution affects predator–prey population dynamics), we find that coevolution can cause rich dynamics including anti-phase cycles, in-phase cycles, chaotic dynamics and deterministic predator extinction. Predator extinction is more likely to occur when the prey trait exhibits complete dominance rather than semidominance and when the predator trait evolves very rapidly. Our study illustrates how recognizing the genetic architectures of interacting ecological traits can be essential for understanding the population and evolutionary dynamics of coevolving species.
doi_str_mv 10.1098/rspb.2015.2926
format Article
fullrecord <record><control><sourceid>proquest_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rspb_2015_2926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1776091030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c600t-45d3c3e80fabf1bbb60d1067cbf40fd6057c01bb19e54cdf753c5ac70ee5d9613</originalsourceid><addsrcrecordid>eNp9ks9vFCEUx4nR2LV69Wjm6GXWBwwMczFpm1pNajT-OBOGeVOps7AFZs32r5d118aa6Al4fN73kU8g5DmFJYVOvYpp3S8ZULFkHZMPyII2La1ZJ5qHZAGdZLVqBDsiT1K6BoBOKPGYHLG2bBlVC3J64rO5Ct6l7GxlA27CNGcXfNVj_oHoq5vZ-OyyyW6DlfFD9R79gJMzvsrRuJyekkejmRI-O6zH5Oub8y9nb-vLDxfvzk4uaysBct2IgVuOCkbTj7TvewkDBdnafmxgHCSI1kKp0w5FY4exFdwKY1tAFEMnKT8mr_e567lf4WDRl_mTXke3MnGrg3H6_o133_RV2OhGMdYIWQJeHgJiuJkxZb1yyeI0GY9hTpq2rYSOAoeCLveojSGliOPdGAp6J17vxOudeL0TXxpe_Pm4O_y36QLwPRDDtlgK1mHe6uswR1-O_479_r-uT58_nm6Y4o4q1mpQnIKg5QfoW7c-RCmuXUoz6l_I_fi_p_0E-Gy2Og</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1776091030</pqid></control><display><type>article</type><title>Antagonistic coevolution between quantitative and Mendelian traits</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><creator>Yamamichi, Masato ; Ellner, Stephen P.</creator><creatorcontrib>Yamamichi, Masato ; Ellner, Stephen P.</creatorcontrib><description>Coevolution is relentlessly creating and maintaining biodiversity and therefore has been a central topic in evolutionary biology. Previous theoretical studies have mostly considered coevolution between genetically symmetric traits (i.e. coevolution between two continuous quantitative traits or two discrete Mendelian traits). However, recent empirical evidence indicates that coevolution can occur between genetically asymmetric traits (e.g. between quantitative and Mendelian traits). We examine consequences of antagonistic coevolution mediated by a quantitative predator trait and a Mendelian prey trait, such that predation is more intense with decreased phenotypic distance between their traits (phenotype matching). This antagonistic coevolution produces a complex pattern of bifurcations with bistability (initial state dependence) in a two-dimensional model for trait coevolution. Furthermore, with eco-evolutionary dynamics (so that the trait evolution affects predator–prey population dynamics), we find that coevolution can cause rich dynamics including anti-phase cycles, in-phase cycles, chaotic dynamics and deterministic predator extinction. Predator extinction is more likely to occur when the prey trait exhibits complete dominance rather than semidominance and when the predator trait evolves very rapidly. Our study illustrates how recognizing the genetic architectures of interacting ecological traits can be essential for understanding the population and evolutionary dynamics of coevolving species.</description><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.2015.2926</identifier><identifier>PMID: 27009218</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Animals ; Biological Evolution ; Coevolution ; Eco-Evolutionary Feedbacks ; Extinction ; Food Chain ; Herbivory ; Major-Gene Discrete Trait ; Models, Biological ; Phenotype ; Polygenic Continuous Trait ; Predatory Behavior ; Red Queen Dynamics</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2016-03, Vol.283 (1827), p.20152926-20152926</ispartof><rights>2016 The Author(s)</rights><rights>2016 The Author(s).</rights><rights>2016 The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c600t-45d3c3e80fabf1bbb60d1067cbf40fd6057c01bb19e54cdf753c5ac70ee5d9613</citedby><cites>FETCH-LOGICAL-c600t-45d3c3e80fabf1bbb60d1067cbf40fd6057c01bb19e54cdf753c5ac70ee5d9613</cites><orcidid>0000-0003-2136-3399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4822456/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4822456/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27009218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamamichi, Masato</creatorcontrib><creatorcontrib>Ellner, Stephen P.</creatorcontrib><title>Antagonistic coevolution between quantitative and Mendelian traits</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc. R. Soc. B</addtitle><addtitle>Proc Biol Sci</addtitle><description>Coevolution is relentlessly creating and maintaining biodiversity and therefore has been a central topic in evolutionary biology. Previous theoretical studies have mostly considered coevolution between genetically symmetric traits (i.e. coevolution between two continuous quantitative traits or two discrete Mendelian traits). However, recent empirical evidence indicates that coevolution can occur between genetically asymmetric traits (e.g. between quantitative and Mendelian traits). We examine consequences of antagonistic coevolution mediated by a quantitative predator trait and a Mendelian prey trait, such that predation is more intense with decreased phenotypic distance between their traits (phenotype matching). This antagonistic coevolution produces a complex pattern of bifurcations with bistability (initial state dependence) in a two-dimensional model for trait coevolution. Furthermore, with eco-evolutionary dynamics (so that the trait evolution affects predator–prey population dynamics), we find that coevolution can cause rich dynamics including anti-phase cycles, in-phase cycles, chaotic dynamics and deterministic predator extinction. Predator extinction is more likely to occur when the prey trait exhibits complete dominance rather than semidominance and when the predator trait evolves very rapidly. Our study illustrates how recognizing the genetic architectures of interacting ecological traits can be essential for understanding the population and evolutionary dynamics of coevolving species.</description><subject>Animals</subject><subject>Biological Evolution</subject><subject>Coevolution</subject><subject>Eco-Evolutionary Feedbacks</subject><subject>Extinction</subject><subject>Food Chain</subject><subject>Herbivory</subject><subject>Major-Gene Discrete Trait</subject><subject>Models, Biological</subject><subject>Phenotype</subject><subject>Polygenic Continuous Trait</subject><subject>Predatory Behavior</subject><subject>Red Queen Dynamics</subject><issn>0962-8452</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9ks9vFCEUx4nR2LV69Wjm6GXWBwwMczFpm1pNajT-OBOGeVOps7AFZs32r5d118aa6Al4fN73kU8g5DmFJYVOvYpp3S8ZULFkHZMPyII2La1ZJ5qHZAGdZLVqBDsiT1K6BoBOKPGYHLG2bBlVC3J64rO5Ct6l7GxlA27CNGcXfNVj_oHoq5vZ-OyyyW6DlfFD9R79gJMzvsrRuJyekkejmRI-O6zH5Oub8y9nb-vLDxfvzk4uaysBct2IgVuOCkbTj7TvewkDBdnafmxgHCSI1kKp0w5FY4exFdwKY1tAFEMnKT8mr_e567lf4WDRl_mTXke3MnGrg3H6_o133_RV2OhGMdYIWQJeHgJiuJkxZb1yyeI0GY9hTpq2rYSOAoeCLveojSGliOPdGAp6J17vxOudeL0TXxpe_Pm4O_y36QLwPRDDtlgK1mHe6uswR1-O_479_r-uT58_nm6Y4o4q1mpQnIKg5QfoW7c-RCmuXUoz6l_I_fi_p_0E-Gy2Og</recordid><startdate>20160330</startdate><enddate>20160330</enddate><creator>Yamamichi, Masato</creator><creator>Ellner, Stephen P.</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2136-3399</orcidid></search><sort><creationdate>20160330</creationdate><title>Antagonistic coevolution between quantitative and Mendelian traits</title><author>Yamamichi, Masato ; Ellner, Stephen P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c600t-45d3c3e80fabf1bbb60d1067cbf40fd6057c01bb19e54cdf753c5ac70ee5d9613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Biological Evolution</topic><topic>Coevolution</topic><topic>Eco-Evolutionary Feedbacks</topic><topic>Extinction</topic><topic>Food Chain</topic><topic>Herbivory</topic><topic>Major-Gene Discrete Trait</topic><topic>Models, Biological</topic><topic>Phenotype</topic><topic>Polygenic Continuous Trait</topic><topic>Predatory Behavior</topic><topic>Red Queen Dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamamichi, Masato</creatorcontrib><creatorcontrib>Ellner, Stephen P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamamichi, Masato</au><au>Ellner, Stephen P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antagonistic coevolution between quantitative and Mendelian traits</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><stitle>Proc. R. Soc. B</stitle><addtitle>Proc Biol Sci</addtitle><date>2016-03-30</date><risdate>2016</risdate><volume>283</volume><issue>1827</issue><spage>20152926</spage><epage>20152926</epage><pages>20152926-20152926</pages><issn>0962-8452</issn><eissn>1471-2954</eissn><abstract>Coevolution is relentlessly creating and maintaining biodiversity and therefore has been a central topic in evolutionary biology. Previous theoretical studies have mostly considered coevolution between genetically symmetric traits (i.e. coevolution between two continuous quantitative traits or two discrete Mendelian traits). However, recent empirical evidence indicates that coevolution can occur between genetically asymmetric traits (e.g. between quantitative and Mendelian traits). We examine consequences of antagonistic coevolution mediated by a quantitative predator trait and a Mendelian prey trait, such that predation is more intense with decreased phenotypic distance between their traits (phenotype matching). This antagonistic coevolution produces a complex pattern of bifurcations with bistability (initial state dependence) in a two-dimensional model for trait coevolution. Furthermore, with eco-evolutionary dynamics (so that the trait evolution affects predator–prey population dynamics), we find that coevolution can cause rich dynamics including anti-phase cycles, in-phase cycles, chaotic dynamics and deterministic predator extinction. Predator extinction is more likely to occur when the prey trait exhibits complete dominance rather than semidominance and when the predator trait evolves very rapidly. Our study illustrates how recognizing the genetic architectures of interacting ecological traits can be essential for understanding the population and evolutionary dynamics of coevolving species.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>27009218</pmid><doi>10.1098/rspb.2015.2926</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2136-3399</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8452
ispartof Proceedings of the Royal Society. B, Biological sciences, 2016-03, Vol.283 (1827), p.20152926-20152926
issn 0962-8452
1471-2954
language eng
recordid cdi_royalsociety_journals_10_1098_rspb_2015_2926
source Jstor Complete Legacy; MEDLINE; PubMed Central
subjects Animals
Biological Evolution
Coevolution
Eco-Evolutionary Feedbacks
Extinction
Food Chain
Herbivory
Major-Gene Discrete Trait
Models, Biological
Phenotype
Polygenic Continuous Trait
Predatory Behavior
Red Queen Dynamics
title Antagonistic coevolution between quantitative and Mendelian traits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A06%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antagonistic%20coevolution%20between%20quantitative%20and%20Mendelian%20traits&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Yamamichi,%20Masato&rft.date=2016-03-30&rft.volume=283&rft.issue=1827&rft.spage=20152926&rft.epage=20152926&rft.pages=20152926-20152926&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.2015.2926&rft_dat=%3Cproquest_royal%3E1776091030%3C/proquest_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1776091030&rft_id=info:pmid/27009218&rfr_iscdi=true