Morphological and histological adaptation of muscle and bone to loading induced by repetitive activation of muscle

Muscular contraction plays a pivotal role in the mechanical environment of bone, but controlled muscular contractions are rarely used to study the response of bone to mechanical stimuli. Here, we use implantable stimulators to elicit programmed contractions of the rat tibialis anterior (TA) muscle....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2014-08, Vol.281 (1788), p.20140786-20140786
Hauptverfasser: Vickerton, Paula, Jarvis, Jonathan C., Gallagher, James A., Akhtar, Riaz, Sutherland, Hazel, Jeffery, Nathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20140786
container_issue 1788
container_start_page 20140786
container_title Proceedings of the Royal Society. B, Biological sciences
container_volume 281
creator Vickerton, Paula
Jarvis, Jonathan C.
Gallagher, James A.
Akhtar, Riaz
Sutherland, Hazel
Jeffery, Nathan
description Muscular contraction plays a pivotal role in the mechanical environment of bone, but controlled muscular contractions are rarely used to study the response of bone to mechanical stimuli. Here, we use implantable stimulators to elicit programmed contractions of the rat tibialis anterior (TA) muscle. Miniature stimulators were implanted in Wistar rats (n = 9) to induce contraction of the left TA every 30 s for 28 days. The right limb was used as a contralateral control. Hindlimbs were imaged using microCT. Image data were used for bone measurements, and to construct a finite-element (FE) model simulation of TA forces propagating through the bone. This simulation was used to target subsequent bone histology and measurement of micromechanical properties to areas of high strain. FE mapping of simulated strains revealed peak values in the anterodistal region of the tibia (640 µε ± 30.4 µε). This region showed significant increases in cross-sectional area (28.61%, p < 0.05) and bone volume (30.29%, p < 0.05) in the stimulated limb. Histology revealed a large region of new bone, containing clusters of chondrocytes, indicative of endochondral ossification. The new bone region had a lower elastic modulus (8.8 ± 2.2 GPa) when compared with established bone (20 ± 1.4 GPa). Our study provides compelling new evidence of the interplay between muscle and bone.
doi_str_mv 10.1098/rspb.2014.0786
format Article
fullrecord <record><control><sourceid>proquest_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rspb_2014_0786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1541382246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-3cfd0010c8b933fc28261dbcc667bd91410228b2d59e137578ff78afa9306d03</originalsourceid><addsrcrecordid>eNp9kk1vEzEQhi0EoqFw5Yj2yGVTf63XviBBRUtRERGtIm6W1_YmbjfrxfZGDb8epwmBguA08viZd2b8GoCXCE4RFPwkxKGZYojoFNacPQITRGtUYkGrx2ACBcMlpxU-As9ivIEQiopXT8ERpoIxgugEhE8-DEvf-YXTqitUb4qli-lXwqghqeR8X_i2WI1Rd_aeanxvi-SLzivj-kXhejNqm_ObItjBJpfcOpM6hz_Kn4MnreqifbGPx-D67P316Yfy8vP5xenby1IzilNJdGsgRFDzRhDSaswxQ6bRmrG6MQJRBDHmDTaVsIjUVc3btuaqVYJAZiA5Bm92ssPYrKzRtk9BdXIIbqXCRnrl5MOb3i3lwq8lhZzUgmaB13uB4L-NNia5clHbrlO99WOUqKKIcIwpy-h0h-rgYwy2PbRBUG59kluf5NYnufUpF7z6fbgD_tOYDJAdEPwmP5LXzqaNvPFj6PPx37K3_6v6cjV7t8YcOVRzLvOaCFYIQia_u2EvxZF0MY5W3iMP5f_uVu665Q9j7w47qHArWZ0dkXNO5fyMzq4-zmfyK_kBimbVlw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1541382246</pqid></control><display><type>article</type><title>Morphological and histological adaptation of muscle and bone to loading induced by repetitive activation of muscle</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><creator>Vickerton, Paula ; Jarvis, Jonathan C. ; Gallagher, James A. ; Akhtar, Riaz ; Sutherland, Hazel ; Jeffery, Nathan</creator><creatorcontrib>Vickerton, Paula ; Jarvis, Jonathan C. ; Gallagher, James A. ; Akhtar, Riaz ; Sutherland, Hazel ; Jeffery, Nathan</creatorcontrib><description>Muscular contraction plays a pivotal role in the mechanical environment of bone, but controlled muscular contractions are rarely used to study the response of bone to mechanical stimuli. Here, we use implantable stimulators to elicit programmed contractions of the rat tibialis anterior (TA) muscle. Miniature stimulators were implanted in Wistar rats (n = 9) to induce contraction of the left TA every 30 s for 28 days. The right limb was used as a contralateral control. Hindlimbs were imaged using microCT. Image data were used for bone measurements, and to construct a finite-element (FE) model simulation of TA forces propagating through the bone. This simulation was used to target subsequent bone histology and measurement of micromechanical properties to areas of high strain. FE mapping of simulated strains revealed peak values in the anterodistal region of the tibia (640 µε ± 30.4 µε). This region showed significant increases in cross-sectional area (28.61%, p &lt; 0.05) and bone volume (30.29%, p &lt; 0.05) in the stimulated limb. Histology revealed a large region of new bone, containing clusters of chondrocytes, indicative of endochondral ossification. The new bone region had a lower elastic modulus (8.8 ± 2.2 GPa) when compared with established bone (20 ± 1.4 GPa). Our study provides compelling new evidence of the interplay between muscle and bone.</description><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2945</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.2014.0786</identifier><identifier>PMID: 24966314</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Animals ; Biomechanical Phenomena ; Bone ; Computer Simulation ; Elastic Modulus ; Electric Stimulation ; Loading ; Male ; Mechanotransduction ; Models, Biological ; Muscle Contraction ; Muscle Electrical Stimulation ; Muscle, Skeletal - physiology ; Rats ; Rats, Wistar ; Tibia - anatomy &amp; histology ; Tibia - diagnostic imaging ; X-Ray Microtomography</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2014-08, Vol.281 (1788), p.20140786-20140786</ispartof><rights>2014 The Author(s) Published by the Royal Society. All rights reserved.</rights><rights>2014 The Author(s) Published by the Royal Society. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c642t-3cfd0010c8b933fc28261dbcc667bd91410228b2d59e137578ff78afa9306d03</citedby><cites>FETCH-LOGICAL-c642t-3cfd0010c8b933fc28261dbcc667bd91410228b2d59e137578ff78afa9306d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4083794/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4083794/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24966314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vickerton, Paula</creatorcontrib><creatorcontrib>Jarvis, Jonathan C.</creatorcontrib><creatorcontrib>Gallagher, James A.</creatorcontrib><creatorcontrib>Akhtar, Riaz</creatorcontrib><creatorcontrib>Sutherland, Hazel</creatorcontrib><creatorcontrib>Jeffery, Nathan</creatorcontrib><title>Morphological and histological adaptation of muscle and bone to loading induced by repetitive activation of muscle</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc. R. Soc. B</addtitle><addtitle>Proc. R. Soc. B</addtitle><description>Muscular contraction plays a pivotal role in the mechanical environment of bone, but controlled muscular contractions are rarely used to study the response of bone to mechanical stimuli. Here, we use implantable stimulators to elicit programmed contractions of the rat tibialis anterior (TA) muscle. Miniature stimulators were implanted in Wistar rats (n = 9) to induce contraction of the left TA every 30 s for 28 days. The right limb was used as a contralateral control. Hindlimbs were imaged using microCT. Image data were used for bone measurements, and to construct a finite-element (FE) model simulation of TA forces propagating through the bone. This simulation was used to target subsequent bone histology and measurement of micromechanical properties to areas of high strain. FE mapping of simulated strains revealed peak values in the anterodistal region of the tibia (640 µε ± 30.4 µε). This region showed significant increases in cross-sectional area (28.61%, p &lt; 0.05) and bone volume (30.29%, p &lt; 0.05) in the stimulated limb. Histology revealed a large region of new bone, containing clusters of chondrocytes, indicative of endochondral ossification. The new bone region had a lower elastic modulus (8.8 ± 2.2 GPa) when compared with established bone (20 ± 1.4 GPa). Our study provides compelling new evidence of the interplay between muscle and bone.</description><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Bone</subject><subject>Computer Simulation</subject><subject>Elastic Modulus</subject><subject>Electric Stimulation</subject><subject>Loading</subject><subject>Male</subject><subject>Mechanotransduction</subject><subject>Models, Biological</subject><subject>Muscle Contraction</subject><subject>Muscle Electrical Stimulation</subject><subject>Muscle, Skeletal - physiology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Tibia - anatomy &amp; histology</subject><subject>Tibia - diagnostic imaging</subject><subject>X-Ray Microtomography</subject><issn>0962-8452</issn><issn>1471-2945</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kk1vEzEQhi0EoqFw5Yj2yGVTf63XviBBRUtRERGtIm6W1_YmbjfrxfZGDb8epwmBguA08viZd2b8GoCXCE4RFPwkxKGZYojoFNacPQITRGtUYkGrx2ACBcMlpxU-As9ivIEQiopXT8ERpoIxgugEhE8-DEvf-YXTqitUb4qli-lXwqghqeR8X_i2WI1Rd_aeanxvi-SLzivj-kXhejNqm_ObItjBJpfcOpM6hz_Kn4MnreqifbGPx-D67P316Yfy8vP5xenby1IzilNJdGsgRFDzRhDSaswxQ6bRmrG6MQJRBDHmDTaVsIjUVc3btuaqVYJAZiA5Bm92ssPYrKzRtk9BdXIIbqXCRnrl5MOb3i3lwq8lhZzUgmaB13uB4L-NNia5clHbrlO99WOUqKKIcIwpy-h0h-rgYwy2PbRBUG59kluf5NYnufUpF7z6fbgD_tOYDJAdEPwmP5LXzqaNvPFj6PPx37K3_6v6cjV7t8YcOVRzLvOaCFYIQia_u2EvxZF0MY5W3iMP5f_uVu665Q9j7w47qHArWZ0dkXNO5fyMzq4-zmfyK_kBimbVlw</recordid><startdate>20140807</startdate><enddate>20140807</enddate><creator>Vickerton, Paula</creator><creator>Jarvis, Jonathan C.</creator><creator>Gallagher, James A.</creator><creator>Akhtar, Riaz</creator><creator>Sutherland, Hazel</creator><creator>Jeffery, Nathan</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140807</creationdate><title>Morphological and histological adaptation of muscle and bone to loading induced by repetitive activation of muscle</title><author>Vickerton, Paula ; Jarvis, Jonathan C. ; Gallagher, James A. ; Akhtar, Riaz ; Sutherland, Hazel ; Jeffery, Nathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-3cfd0010c8b933fc28261dbcc667bd91410228b2d59e137578ff78afa9306d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Bone</topic><topic>Computer Simulation</topic><topic>Elastic Modulus</topic><topic>Electric Stimulation</topic><topic>Loading</topic><topic>Male</topic><topic>Mechanotransduction</topic><topic>Models, Biological</topic><topic>Muscle Contraction</topic><topic>Muscle Electrical Stimulation</topic><topic>Muscle, Skeletal - physiology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Tibia - anatomy &amp; histology</topic><topic>Tibia - diagnostic imaging</topic><topic>X-Ray Microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vickerton, Paula</creatorcontrib><creatorcontrib>Jarvis, Jonathan C.</creatorcontrib><creatorcontrib>Gallagher, James A.</creatorcontrib><creatorcontrib>Akhtar, Riaz</creatorcontrib><creatorcontrib>Sutherland, Hazel</creatorcontrib><creatorcontrib>Jeffery, Nathan</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vickerton, Paula</au><au>Jarvis, Jonathan C.</au><au>Gallagher, James A.</au><au>Akhtar, Riaz</au><au>Sutherland, Hazel</au><au>Jeffery, Nathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphological and histological adaptation of muscle and bone to loading induced by repetitive activation of muscle</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><stitle>Proc. R. Soc. B</stitle><addtitle>Proc. R. Soc. B</addtitle><date>2014-08-07</date><risdate>2014</risdate><volume>281</volume><issue>1788</issue><spage>20140786</spage><epage>20140786</epage><pages>20140786-20140786</pages><issn>0962-8452</issn><eissn>1471-2945</eissn><eissn>1471-2954</eissn><abstract>Muscular contraction plays a pivotal role in the mechanical environment of bone, but controlled muscular contractions are rarely used to study the response of bone to mechanical stimuli. Here, we use implantable stimulators to elicit programmed contractions of the rat tibialis anterior (TA) muscle. Miniature stimulators were implanted in Wistar rats (n = 9) to induce contraction of the left TA every 30 s for 28 days. The right limb was used as a contralateral control. Hindlimbs were imaged using microCT. Image data were used for bone measurements, and to construct a finite-element (FE) model simulation of TA forces propagating through the bone. This simulation was used to target subsequent bone histology and measurement of micromechanical properties to areas of high strain. FE mapping of simulated strains revealed peak values in the anterodistal region of the tibia (640 µε ± 30.4 µε). This region showed significant increases in cross-sectional area (28.61%, p &lt; 0.05) and bone volume (30.29%, p &lt; 0.05) in the stimulated limb. Histology revealed a large region of new bone, containing clusters of chondrocytes, indicative of endochondral ossification. The new bone region had a lower elastic modulus (8.8 ± 2.2 GPa) when compared with established bone (20 ± 1.4 GPa). Our study provides compelling new evidence of the interplay between muscle and bone.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>24966314</pmid><doi>10.1098/rspb.2014.0786</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8452
ispartof Proceedings of the Royal Society. B, Biological sciences, 2014-08, Vol.281 (1788), p.20140786-20140786
issn 0962-8452
1471-2945
1471-2954
language eng
recordid cdi_royalsociety_journals_10_1098_rspb_2014_0786
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central
subjects Animals
Biomechanical Phenomena
Bone
Computer Simulation
Elastic Modulus
Electric Stimulation
Loading
Male
Mechanotransduction
Models, Biological
Muscle Contraction
Muscle Electrical Stimulation
Muscle, Skeletal - physiology
Rats
Rats, Wistar
Tibia - anatomy & histology
Tibia - diagnostic imaging
X-Ray Microtomography
title Morphological and histological adaptation of muscle and bone to loading induced by repetitive activation of muscle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A20%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphological%20and%20histological%20adaptation%20of%20muscle%20and%20bone%20to%20loading%20induced%20by%20repetitive%20activation%20of%20muscle&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Vickerton,%20Paula&rft.date=2014-08-07&rft.volume=281&rft.issue=1788&rft.spage=20140786&rft.epage=20140786&rft.pages=20140786-20140786&rft.issn=0962-8452&rft.eissn=1471-2945&rft_id=info:doi/10.1098/rspb.2014.0786&rft_dat=%3Cproquest_royal%3E1541382246%3C/proquest_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1541382246&rft_id=info:pmid/24966314&rfr_iscdi=true