Statistical Geometry of Pancreatic Islets
Quantitative histomorphometric studies of the dynamics of growth and development of pancreatic islets in normal and pathological states pose substantial methodological and conceptual problems. We address these problems with the geometry of random fractals, and apply our methods to the analysis of is...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. B, Biological sciences Biological sciences, 1992-12, Vol.250 (1329), p.257-261 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 261 |
---|---|
container_issue | 1329 |
container_start_page | 257 |
container_title | Proceedings of the Royal Society. B, Biological sciences |
container_volume | 250 |
creator | Hastings, Harold M. Schneider, Bruce S. Schreiber, Micheline A. Gorray, K. Maytal, Guy Maimon, J. |
description | Quantitative histomorphometric studies of the dynamics of growth and development of pancreatic islets in normal and pathological states pose substantial methodological and conceptual problems. We address these problems with the geometry of random fractals, and apply our methods to the analysis of islet regeneration in the alloxan-treated guinea-pig. In both experimental islet-regenerated and control animals, islet centres are found to cluster in similar fractal subsets of dimension strictly less than 3, in agreement with the postulated origin of islets along a system of ductules, and suggesting that regeneration follows the same mathematical dynamics as original islet formation. |
doi_str_mv | 10.1098/rspb.1992.0157 |
format | Article |
fullrecord | <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rspb_1992_0157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>49549</jstor_id><sourcerecordid>49549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c626t-2f345346078a80c3ab965303aaea1e4f4b5ae70617352f9911ce96589cd11d073</originalsourceid><addsrcrecordid>eNp9kc9v0zAcxS0EGmVw5YCE1AMXDun8M45PaEywTapYYTBx-8pxbeaSNpHtAuWvn5NMmyrETpH13vN7nxihlwTPCFbVUYhdPSNK0RkmQj5CE8IlKagS_DGaYFXSouKCPkXPYlxhjJWoxAE6IKykSvEJenuZdPIxeaOb6alt1zaF3bR104XemGCzZqbnsbEpPkdPnG6ifXH7PUTfPn74enJWzC9Oz0-O54UpaZkK6hgXjJdYVrrChulalYJhprXVxHLHa6GtxCWRTFCnFCHGZkelzJKQJZbsEM3Ge01oYwzWQRf8WocdEAw9MvTI0CNDj5wDr8dAt63XdnlvHxmz_uZW1zFTupDJfLyz5bVY4Srb2GgL7S7ztcbbtINVuw2bfPx_eXwo9eVy8T6b8S8qsCeMKshNBAsiuIS_vhuu6w2QDeBj3FoYbPs1_7a-GltXMbXhHiW_uspiMYr5We2fO1GHn1BKJgVcVRy-Lz59vlrMBfT_h4z-a__j-rcPFvZY8qELsR4GDtPoMODdg5l-rmk3yW7SXhDctmmgWzp2A6F90_o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Statistical Geometry of Pancreatic Islets</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Hastings, Harold M. ; Schneider, Bruce S. ; Schreiber, Micheline A. ; Gorray, K. ; Maytal, Guy ; Maimon, J.</creator><creatorcontrib>Hastings, Harold M. ; Schneider, Bruce S. ; Schreiber, Micheline A. ; Gorray, K. ; Maytal, Guy ; Maimon, J.</creatorcontrib><description>Quantitative histomorphometric studies of the dynamics of growth and development of pancreatic islets in normal and pathological states pose substantial methodological and conceptual problems. We address these problems with the geometry of random fractals, and apply our methods to the analysis of islet regeneration in the alloxan-treated guinea-pig. In both experimental islet-regenerated and control animals, islet centres are found to cluster in similar fractal subsets of dimension strictly less than 3, in agreement with the postulated origin of islets along a system of ductules, and suggesting that regeneration follows the same mathematical dynamics as original islet formation.</description><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.1992.0157</identifier><identifier>PMID: 1362994</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Alloxan - toxicity ; Animals ; Biological and medical sciences ; Cantor set ; Diabetes Mellitus, Experimental - pathology ; Endocrine pancreas. Apud cells (diseases) ; Endocrinopathies ; Fractal dimensions ; Fractals ; Geometric planes ; Geometric shapes ; Geometry ; Guinea Pigs ; Islets of Langerhans ; Islets of Langerhans - anatomy & histology ; Islets of Langerhans - drug effects ; Islets of Langerhans - pathology ; Laboratory animals ; Mathematics ; Medical sciences ; Models, Biological ; Pancreas ; Power laws</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 1992-12, Vol.250 (1329), p.257-261</ispartof><rights>Copyright 1992 The Royal Society</rights><rights>Scanned images copyright © 2017, Royal Society</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c626t-2f345346078a80c3ab965303aaea1e4f4b5ae70617352f9911ce96589cd11d073</citedby><cites>FETCH-LOGICAL-c626t-2f345346078a80c3ab965303aaea1e4f4b5ae70617352f9911ce96589cd11d073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/49549$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/49549$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4530908$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1362994$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hastings, Harold M.</creatorcontrib><creatorcontrib>Schneider, Bruce S.</creatorcontrib><creatorcontrib>Schreiber, Micheline A.</creatorcontrib><creatorcontrib>Gorray, K.</creatorcontrib><creatorcontrib>Maytal, Guy</creatorcontrib><creatorcontrib>Maimon, J.</creatorcontrib><title>Statistical Geometry of Pancreatic Islets</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc. R. Soc. Lond. B</addtitle><addtitle>Proc. R. Soc. Lond. B</addtitle><description>Quantitative histomorphometric studies of the dynamics of growth and development of pancreatic islets in normal and pathological states pose substantial methodological and conceptual problems. We address these problems with the geometry of random fractals, and apply our methods to the analysis of islet regeneration in the alloxan-treated guinea-pig. In both experimental islet-regenerated and control animals, islet centres are found to cluster in similar fractal subsets of dimension strictly less than 3, in agreement with the postulated origin of islets along a system of ductules, and suggesting that regeneration follows the same mathematical dynamics as original islet formation.</description><subject>Alloxan - toxicity</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cantor set</subject><subject>Diabetes Mellitus, Experimental - pathology</subject><subject>Endocrine pancreas. Apud cells (diseases)</subject><subject>Endocrinopathies</subject><subject>Fractal dimensions</subject><subject>Fractals</subject><subject>Geometric planes</subject><subject>Geometric shapes</subject><subject>Geometry</subject><subject>Guinea Pigs</subject><subject>Islets of Langerhans</subject><subject>Islets of Langerhans - anatomy & histology</subject><subject>Islets of Langerhans - drug effects</subject><subject>Islets of Langerhans - pathology</subject><subject>Laboratory animals</subject><subject>Mathematics</subject><subject>Medical sciences</subject><subject>Models, Biological</subject><subject>Pancreas</subject><subject>Power laws</subject><issn>0962-8452</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9v0zAcxS0EGmVw5YCE1AMXDun8M45PaEywTapYYTBx-8pxbeaSNpHtAuWvn5NMmyrETpH13vN7nxihlwTPCFbVUYhdPSNK0RkmQj5CE8IlKagS_DGaYFXSouKCPkXPYlxhjJWoxAE6IKykSvEJenuZdPIxeaOb6alt1zaF3bR104XemGCzZqbnsbEpPkdPnG6ifXH7PUTfPn74enJWzC9Oz0-O54UpaZkK6hgXjJdYVrrChulalYJhprXVxHLHa6GtxCWRTFCnFCHGZkelzJKQJZbsEM3Ge01oYwzWQRf8WocdEAw9MvTI0CNDj5wDr8dAt63XdnlvHxmz_uZW1zFTupDJfLyz5bVY4Srb2GgL7S7ztcbbtINVuw2bfPx_eXwo9eVy8T6b8S8qsCeMKshNBAsiuIS_vhuu6w2QDeBj3FoYbPs1_7a-GltXMbXhHiW_uspiMYr5We2fO1GHn1BKJgVcVRy-Lz59vlrMBfT_h4z-a__j-rcPFvZY8qELsR4GDtPoMODdg5l-rmk3yW7SXhDctmmgWzp2A6F90_o</recordid><startdate>19921222</startdate><enddate>19921222</enddate><creator>Hastings, Harold M.</creator><creator>Schneider, Bruce S.</creator><creator>Schreiber, Micheline A.</creator><creator>Gorray, K.</creator><creator>Maytal, Guy</creator><creator>Maimon, J.</creator><general>The Royal Society</general><general>Royal Society of London</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19921222</creationdate><title>Statistical Geometry of Pancreatic Islets</title><author>Hastings, Harold M. ; Schneider, Bruce S. ; Schreiber, Micheline A. ; Gorray, K. ; Maytal, Guy ; Maimon, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c626t-2f345346078a80c3ab965303aaea1e4f4b5ae70617352f9911ce96589cd11d073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Alloxan - toxicity</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cantor set</topic><topic>Diabetes Mellitus, Experimental - pathology</topic><topic>Endocrine pancreas. Apud cells (diseases)</topic><topic>Endocrinopathies</topic><topic>Fractal dimensions</topic><topic>Fractals</topic><topic>Geometric planes</topic><topic>Geometric shapes</topic><topic>Geometry</topic><topic>Guinea Pigs</topic><topic>Islets of Langerhans</topic><topic>Islets of Langerhans - anatomy & histology</topic><topic>Islets of Langerhans - drug effects</topic><topic>Islets of Langerhans - pathology</topic><topic>Laboratory animals</topic><topic>Mathematics</topic><topic>Medical sciences</topic><topic>Models, Biological</topic><topic>Pancreas</topic><topic>Power laws</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hastings, Harold M.</creatorcontrib><creatorcontrib>Schneider, Bruce S.</creatorcontrib><creatorcontrib>Schreiber, Micheline A.</creatorcontrib><creatorcontrib>Gorray, K.</creatorcontrib><creatorcontrib>Maytal, Guy</creatorcontrib><creatorcontrib>Maimon, J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hastings, Harold M.</au><au>Schneider, Bruce S.</au><au>Schreiber, Micheline A.</au><au>Gorray, K.</au><au>Maytal, Guy</au><au>Maimon, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Geometry of Pancreatic Islets</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><stitle>Proc. R. Soc. Lond. B</stitle><addtitle>Proc. R. Soc. Lond. B</addtitle><date>1992-12-22</date><risdate>1992</risdate><volume>250</volume><issue>1329</issue><spage>257</spage><epage>261</epage><pages>257-261</pages><issn>0962-8452</issn><eissn>1471-2954</eissn><abstract>Quantitative histomorphometric studies of the dynamics of growth and development of pancreatic islets in normal and pathological states pose substantial methodological and conceptual problems. We address these problems with the geometry of random fractals, and apply our methods to the analysis of islet regeneration in the alloxan-treated guinea-pig. In both experimental islet-regenerated and control animals, islet centres are found to cluster in similar fractal subsets of dimension strictly less than 3, in agreement with the postulated origin of islets along a system of ductules, and suggesting that regeneration follows the same mathematical dynamics as original islet formation.</abstract><cop>London</cop><pub>The Royal Society</pub><pmid>1362994</pmid><doi>10.1098/rspb.1992.0157</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8452 |
ispartof | Proceedings of the Royal Society. B, Biological sciences, 1992-12, Vol.250 (1329), p.257-261 |
issn | 0962-8452 1471-2954 |
language | eng |
recordid | cdi_royalsociety_journals_10_1098_rspb_1992_0157 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing |
subjects | Alloxan - toxicity Animals Biological and medical sciences Cantor set Diabetes Mellitus, Experimental - pathology Endocrine pancreas. Apud cells (diseases) Endocrinopathies Fractal dimensions Fractals Geometric planes Geometric shapes Geometry Guinea Pigs Islets of Langerhans Islets of Langerhans - anatomy & histology Islets of Langerhans - drug effects Islets of Langerhans - pathology Laboratory animals Mathematics Medical sciences Models, Biological Pancreas Power laws |
title | Statistical Geometry of Pancreatic Islets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A34%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Geometry%20of%20Pancreatic%20Islets&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Hastings,%20Harold%20M.&rft.date=1992-12-22&rft.volume=250&rft.issue=1329&rft.spage=257&rft.epage=261&rft.pages=257-261&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.1992.0157&rft_dat=%3Cjstor_royal%3E49549%3C/jstor_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/1362994&rft_jstor_id=49549&rfr_iscdi=true |