Microstructure-based hyperelastic models for closed-cell solids
For cellular bodies involving large elastic deformations, mesoscopic continuum models that take into account the interplay between the geometry and the microstructural responses of the constituents are developed, analysed and compared with finite-element simulations of cellular structures with diffe...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2017-04, Vol.473 (2200), p.20170036-20170036 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20170036 |
---|---|
container_issue | 2200 |
container_start_page | 20170036 |
container_title | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
container_volume | 473 |
creator | Mihai, L. Angela Wyatt, Hayley Goriely, Alain |
description | For cellular bodies involving large elastic deformations, mesoscopic continuum models that take into account the interplay between the geometry and the microstructural responses of the constituents are developed, analysed and compared with finite-element simulations of cellular structures with different architecture. For these models, constitutive restrictions for the physical plausibility of the material responses are established, and global descriptors such as nonlinear elastic and shear moduli and Poisson’s ratio are obtained from the material characteristics of the constituents. Numerical results show that these models capture well the mechanical responses of finite-element simulations for three-dimensional periodic structures of neo-Hookean material with closed cells under large tension. In particular, the mesoscopic models predict the macroscopic stiffening of the structure when the stiffness of the cell-core increases. |
doi_str_mv | 10.1098/rspa.2017.0036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rspa_2017_0036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1984322041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-582d8cfb1fdb94d9a48c3a61a0a98ab029747b965683a589ee4673e642ee205b3</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxS0EomXhyhFF4sIly_gz9gVUVVCQikB8nC3HmVCX7Dq1k0rLX4_TLVVbCU62NL95b2YeIc8prCkY_Trl0a0Z0GYNwNUDckhFQ2tmhHpY_lyJWgKjB-RJzucAYKRuHpMDpoUWXMAhefsp-BTzlGY_zQnr1mXsqrPdiAkHl6fgq03scMhVH1Plh1jKtcdhqHIcQpefkke9GzI-u35X5Mf7d9-PP9Snn08-Hh-d1l4qNtVSs077vqV91xrRGSe0505RB85o1wIzjWhao6TS3EltEIVqOCrBEBnIlq_Im73uOLcb7Dxup-QGO6awcWlnowv2bmUbzuzPeGmloLIpt1mRV9cCKV7MmCe7CXlZxG0xztlSbZQ2TXEt6Mt76Hmc07asZ6kpd2MMBC3Uek8t98sJ-5thKNglG7tkY5ds7JJNaXhxe4Ub_G8YBeB7IMVdMYs-4LS75f0v2V__6_r67cvRpWh4KFODBc0pSKaB2d9h3EuVog05z2ivkLvy993-APwov2U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984322041</pqid></control><display><type>article</type><title>Microstructure-based hyperelastic models for closed-cell solids</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><creator>Mihai, L. Angela ; Wyatt, Hayley ; Goriely, Alain</creator><creatorcontrib>Mihai, L. Angela ; Wyatt, Hayley ; Goriely, Alain</creatorcontrib><description>For cellular bodies involving large elastic deformations, mesoscopic continuum models that take into account the interplay between the geometry and the microstructural responses of the constituents are developed, analysed and compared with finite-element simulations of cellular structures with different architecture. For these models, constitutive restrictions for the physical plausibility of the material responses are established, and global descriptors such as nonlinear elastic and shear moduli and Poisson’s ratio are obtained from the material characteristics of the constituents. Numerical results show that these models capture well the mechanical responses of finite-element simulations for three-dimensional periodic structures of neo-Hookean material with closed cells under large tension. In particular, the mesoscopic models predict the macroscopic stiffening of the structure when the stiffness of the cell-core increases.</description><edition>Royal Society (Great Britain)</edition><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2017.0036</identifier><identifier>PMID: 28484340</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Cellular Solids ; Cellular structure ; Computer simulation ; Constituents ; Constitutive Responses ; Continuum modeling ; Elastic deformation ; Finite element method ; Finite-Element Simulation ; Hyperelastic Model ; Large Strain Deformation ; Mathematical models ; Microstructural Behaviour ; Microstructure ; Periodic structures ; Shear modulus ; Stiffening ; Stiffness ; Three dimensional models</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2017-04, Vol.473 (2200), p.20170036-20170036</ispartof><rights>2017 The Authors.</rights><rights>Copyright The Royal Society Publishing Apr 2017</rights><rights>2017 The Authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-582d8cfb1fdb94d9a48c3a61a0a98ab029747b965683a589ee4673e642ee205b3</citedby><cites>FETCH-LOGICAL-c562t-582d8cfb1fdb94d9a48c3a61a0a98ab029747b965683a589ee4673e642ee205b3</cites><orcidid>0000-0002-6436-8483 ; 0000-0003-0863-3729</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28484340$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mihai, L. Angela</creatorcontrib><creatorcontrib>Wyatt, Hayley</creatorcontrib><creatorcontrib>Goriely, Alain</creatorcontrib><title>Microstructure-based hyperelastic models for closed-cell solids</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc Math Phys Eng Sci</addtitle><description>For cellular bodies involving large elastic deformations, mesoscopic continuum models that take into account the interplay between the geometry and the microstructural responses of the constituents are developed, analysed and compared with finite-element simulations of cellular structures with different architecture. For these models, constitutive restrictions for the physical plausibility of the material responses are established, and global descriptors such as nonlinear elastic and shear moduli and Poisson’s ratio are obtained from the material characteristics of the constituents. Numerical results show that these models capture well the mechanical responses of finite-element simulations for three-dimensional periodic structures of neo-Hookean material with closed cells under large tension. In particular, the mesoscopic models predict the macroscopic stiffening of the structure when the stiffness of the cell-core increases.</description><subject>Cellular Solids</subject><subject>Cellular structure</subject><subject>Computer simulation</subject><subject>Constituents</subject><subject>Constitutive Responses</subject><subject>Continuum modeling</subject><subject>Elastic deformation</subject><subject>Finite element method</subject><subject>Finite-Element Simulation</subject><subject>Hyperelastic Model</subject><subject>Large Strain Deformation</subject><subject>Mathematical models</subject><subject>Microstructural Behaviour</subject><subject>Microstructure</subject><subject>Periodic structures</subject><subject>Shear modulus</subject><subject>Stiffening</subject><subject>Stiffness</subject><subject>Three dimensional models</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kc1v1DAQxS0EomXhyhFF4sIly_gz9gVUVVCQikB8nC3HmVCX7Dq1k0rLX4_TLVVbCU62NL95b2YeIc8prCkY_Trl0a0Z0GYNwNUDckhFQ2tmhHpY_lyJWgKjB-RJzucAYKRuHpMDpoUWXMAhefsp-BTzlGY_zQnr1mXsqrPdiAkHl6fgq03scMhVH1Plh1jKtcdhqHIcQpefkke9GzI-u35X5Mf7d9-PP9Snn08-Hh-d1l4qNtVSs077vqV91xrRGSe0505RB85o1wIzjWhao6TS3EltEIVqOCrBEBnIlq_Im73uOLcb7Dxup-QGO6awcWlnowv2bmUbzuzPeGmloLIpt1mRV9cCKV7MmCe7CXlZxG0xztlSbZQ2TXEt6Mt76Hmc07asZ6kpd2MMBC3Uek8t98sJ-5thKNglG7tkY5ds7JJNaXhxe4Ub_G8YBeB7IMVdMYs-4LS75f0v2V__6_r67cvRpWh4KFODBc0pSKaB2d9h3EuVog05z2ivkLvy993-APwov2U</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Mihai, L. Angela</creator><creator>Wyatt, Hayley</creator><creator>Goriely, Alain</creator><general>The Royal Society Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6436-8483</orcidid><orcidid>https://orcid.org/0000-0003-0863-3729</orcidid></search><sort><creationdate>20170401</creationdate><title>Microstructure-based hyperelastic models for closed-cell solids</title><author>Mihai, L. Angela ; Wyatt, Hayley ; Goriely, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-582d8cfb1fdb94d9a48c3a61a0a98ab029747b965683a589ee4673e642ee205b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cellular Solids</topic><topic>Cellular structure</topic><topic>Computer simulation</topic><topic>Constituents</topic><topic>Constitutive Responses</topic><topic>Continuum modeling</topic><topic>Elastic deformation</topic><topic>Finite element method</topic><topic>Finite-Element Simulation</topic><topic>Hyperelastic Model</topic><topic>Large Strain Deformation</topic><topic>Mathematical models</topic><topic>Microstructural Behaviour</topic><topic>Microstructure</topic><topic>Periodic structures</topic><topic>Shear modulus</topic><topic>Stiffening</topic><topic>Stiffness</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mihai, L. Angela</creatorcontrib><creatorcontrib>Wyatt, Hayley</creatorcontrib><creatorcontrib>Goriely, Alain</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mihai, L. Angela</au><au>Wyatt, Hayley</au><au>Goriely, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure-based hyperelastic models for closed-cell solids</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc Math Phys Eng Sci</addtitle><date>2017-04-01</date><risdate>2017</risdate><volume>473</volume><issue>2200</issue><spage>20170036</spage><epage>20170036</epage><pages>20170036-20170036</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>For cellular bodies involving large elastic deformations, mesoscopic continuum models that take into account the interplay between the geometry and the microstructural responses of the constituents are developed, analysed and compared with finite-element simulations of cellular structures with different architecture. For these models, constitutive restrictions for the physical plausibility of the material responses are established, and global descriptors such as nonlinear elastic and shear moduli and Poisson’s ratio are obtained from the material characteristics of the constituents. Numerical results show that these models capture well the mechanical responses of finite-element simulations for three-dimensional periodic structures of neo-Hookean material with closed cells under large tension. In particular, the mesoscopic models predict the macroscopic stiffening of the structure when the stiffness of the cell-core increases.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>28484340</pmid><doi>10.1098/rspa.2017.0036</doi><tpages>1</tpages><edition>Royal Society (Great Britain)</edition><orcidid>https://orcid.org/0000-0002-6436-8483</orcidid><orcidid>https://orcid.org/0000-0003-0863-3729</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2017-04, Vol.473 (2200), p.20170036-20170036 |
issn | 1364-5021 1471-2946 |
language | eng |
recordid | cdi_royalsociety_journals_10_1098_rspa_2017_0036 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy; Alma/SFX Local Collection |
subjects | Cellular Solids Cellular structure Computer simulation Constituents Constitutive Responses Continuum modeling Elastic deformation Finite element method Finite-Element Simulation Hyperelastic Model Large Strain Deformation Mathematical models Microstructural Behaviour Microstructure Periodic structures Shear modulus Stiffening Stiffness Three dimensional models |
title | Microstructure-based hyperelastic models for closed-cell solids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A54%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure-based%20hyperelastic%20models%20for%20closed-cell%20solids&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Mihai,%20L.%20Angela&rft.date=2017-04-01&rft.volume=473&rft.issue=2200&rft.spage=20170036&rft.epage=20170036&rft.pages=20170036-20170036&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2017.0036&rft_dat=%3Cproquest_royal%3E1984322041%3C/proquest_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1984322041&rft_id=info:pmid/28484340&rfr_iscdi=true |