Microstructure-based hyperelastic models for closed-cell solids

For cellular bodies involving large elastic deformations, mesoscopic continuum models that take into account the interplay between the geometry and the microstructural responses of the constituents are developed, analysed and compared with finite-element simulations of cellular structures with diffe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2017-04, Vol.473 (2200), p.20170036-20170036
Hauptverfasser: Mihai, L. Angela, Wyatt, Hayley, Goriely, Alain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20170036
container_issue 2200
container_start_page 20170036
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 473
creator Mihai, L. Angela
Wyatt, Hayley
Goriely, Alain
description For cellular bodies involving large elastic deformations, mesoscopic continuum models that take into account the interplay between the geometry and the microstructural responses of the constituents are developed, analysed and compared with finite-element simulations of cellular structures with different architecture. For these models, constitutive restrictions for the physical plausibility of the material responses are established, and global descriptors such as nonlinear elastic and shear moduli and Poisson’s ratio are obtained from the material characteristics of the constituents. Numerical results show that these models capture well the mechanical responses of finite-element simulations for three-dimensional periodic structures of neo-Hookean material with closed cells under large tension. In particular, the mesoscopic models predict the macroscopic stiffening of the structure when the stiffness of the cell-core increases.
doi_str_mv 10.1098/rspa.2017.0036
format Article
fullrecord <record><control><sourceid>proquest_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rspa_2017_0036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1984322041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-582d8cfb1fdb94d9a48c3a61a0a98ab029747b965683a589ee4673e642ee205b3</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxS0EomXhyhFF4sIly_gz9gVUVVCQikB8nC3HmVCX7Dq1k0rLX4_TLVVbCU62NL95b2YeIc8prCkY_Trl0a0Z0GYNwNUDckhFQ2tmhHpY_lyJWgKjB-RJzucAYKRuHpMDpoUWXMAhefsp-BTzlGY_zQnr1mXsqrPdiAkHl6fgq03scMhVH1Plh1jKtcdhqHIcQpefkke9GzI-u35X5Mf7d9-PP9Snn08-Hh-d1l4qNtVSs077vqV91xrRGSe0505RB85o1wIzjWhao6TS3EltEIVqOCrBEBnIlq_Im73uOLcb7Dxup-QGO6awcWlnowv2bmUbzuzPeGmloLIpt1mRV9cCKV7MmCe7CXlZxG0xztlSbZQ2TXEt6Mt76Hmc07asZ6kpd2MMBC3Uek8t98sJ-5thKNglG7tkY5ds7JJNaXhxe4Ub_G8YBeB7IMVdMYs-4LS75f0v2V__6_r67cvRpWh4KFODBc0pSKaB2d9h3EuVog05z2ivkLvy993-APwov2U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984322041</pqid></control><display><type>article</type><title>Microstructure-based hyperelastic models for closed-cell solids</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><creator>Mihai, L. Angela ; Wyatt, Hayley ; Goriely, Alain</creator><creatorcontrib>Mihai, L. Angela ; Wyatt, Hayley ; Goriely, Alain</creatorcontrib><description>For cellular bodies involving large elastic deformations, mesoscopic continuum models that take into account the interplay between the geometry and the microstructural responses of the constituents are developed, analysed and compared with finite-element simulations of cellular structures with different architecture. For these models, constitutive restrictions for the physical plausibility of the material responses are established, and global descriptors such as nonlinear elastic and shear moduli and Poisson’s ratio are obtained from the material characteristics of the constituents. Numerical results show that these models capture well the mechanical responses of finite-element simulations for three-dimensional periodic structures of neo-Hookean material with closed cells under large tension. In particular, the mesoscopic models predict the macroscopic stiffening of the structure when the stiffness of the cell-core increases.</description><edition>Royal Society (Great Britain)</edition><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2017.0036</identifier><identifier>PMID: 28484340</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Cellular Solids ; Cellular structure ; Computer simulation ; Constituents ; Constitutive Responses ; Continuum modeling ; Elastic deformation ; Finite element method ; Finite-Element Simulation ; Hyperelastic Model ; Large Strain Deformation ; Mathematical models ; Microstructural Behaviour ; Microstructure ; Periodic structures ; Shear modulus ; Stiffening ; Stiffness ; Three dimensional models</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2017-04, Vol.473 (2200), p.20170036-20170036</ispartof><rights>2017 The Authors.</rights><rights>Copyright The Royal Society Publishing Apr 2017</rights><rights>2017 The Authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-582d8cfb1fdb94d9a48c3a61a0a98ab029747b965683a589ee4673e642ee205b3</citedby><cites>FETCH-LOGICAL-c562t-582d8cfb1fdb94d9a48c3a61a0a98ab029747b965683a589ee4673e642ee205b3</cites><orcidid>0000-0002-6436-8483 ; 0000-0003-0863-3729</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28484340$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mihai, L. Angela</creatorcontrib><creatorcontrib>Wyatt, Hayley</creatorcontrib><creatorcontrib>Goriely, Alain</creatorcontrib><title>Microstructure-based hyperelastic models for closed-cell solids</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc Math Phys Eng Sci</addtitle><description>For cellular bodies involving large elastic deformations, mesoscopic continuum models that take into account the interplay between the geometry and the microstructural responses of the constituents are developed, analysed and compared with finite-element simulations of cellular structures with different architecture. For these models, constitutive restrictions for the physical plausibility of the material responses are established, and global descriptors such as nonlinear elastic and shear moduli and Poisson’s ratio are obtained from the material characteristics of the constituents. Numerical results show that these models capture well the mechanical responses of finite-element simulations for three-dimensional periodic structures of neo-Hookean material with closed cells under large tension. In particular, the mesoscopic models predict the macroscopic stiffening of the structure when the stiffness of the cell-core increases.</description><subject>Cellular Solids</subject><subject>Cellular structure</subject><subject>Computer simulation</subject><subject>Constituents</subject><subject>Constitutive Responses</subject><subject>Continuum modeling</subject><subject>Elastic deformation</subject><subject>Finite element method</subject><subject>Finite-Element Simulation</subject><subject>Hyperelastic Model</subject><subject>Large Strain Deformation</subject><subject>Mathematical models</subject><subject>Microstructural Behaviour</subject><subject>Microstructure</subject><subject>Periodic structures</subject><subject>Shear modulus</subject><subject>Stiffening</subject><subject>Stiffness</subject><subject>Three dimensional models</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kc1v1DAQxS0EomXhyhFF4sIly_gz9gVUVVCQikB8nC3HmVCX7Dq1k0rLX4_TLVVbCU62NL95b2YeIc8prCkY_Trl0a0Z0GYNwNUDckhFQ2tmhHpY_lyJWgKjB-RJzucAYKRuHpMDpoUWXMAhefsp-BTzlGY_zQnr1mXsqrPdiAkHl6fgq03scMhVH1Plh1jKtcdhqHIcQpefkke9GzI-u35X5Mf7d9-PP9Snn08-Hh-d1l4qNtVSs077vqV91xrRGSe0505RB85o1wIzjWhao6TS3EltEIVqOCrBEBnIlq_Im73uOLcb7Dxup-QGO6awcWlnowv2bmUbzuzPeGmloLIpt1mRV9cCKV7MmCe7CXlZxG0xztlSbZQ2TXEt6Mt76Hmc07asZ6kpd2MMBC3Uek8t98sJ-5thKNglG7tkY5ds7JJNaXhxe4Ub_G8YBeB7IMVdMYs-4LS75f0v2V__6_r67cvRpWh4KFODBc0pSKaB2d9h3EuVog05z2ivkLvy993-APwov2U</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Mihai, L. Angela</creator><creator>Wyatt, Hayley</creator><creator>Goriely, Alain</creator><general>The Royal Society Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6436-8483</orcidid><orcidid>https://orcid.org/0000-0003-0863-3729</orcidid></search><sort><creationdate>20170401</creationdate><title>Microstructure-based hyperelastic models for closed-cell solids</title><author>Mihai, L. Angela ; Wyatt, Hayley ; Goriely, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-582d8cfb1fdb94d9a48c3a61a0a98ab029747b965683a589ee4673e642ee205b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cellular Solids</topic><topic>Cellular structure</topic><topic>Computer simulation</topic><topic>Constituents</topic><topic>Constitutive Responses</topic><topic>Continuum modeling</topic><topic>Elastic deformation</topic><topic>Finite element method</topic><topic>Finite-Element Simulation</topic><topic>Hyperelastic Model</topic><topic>Large Strain Deformation</topic><topic>Mathematical models</topic><topic>Microstructural Behaviour</topic><topic>Microstructure</topic><topic>Periodic structures</topic><topic>Shear modulus</topic><topic>Stiffening</topic><topic>Stiffness</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mihai, L. Angela</creatorcontrib><creatorcontrib>Wyatt, Hayley</creatorcontrib><creatorcontrib>Goriely, Alain</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mihai, L. Angela</au><au>Wyatt, Hayley</au><au>Goriely, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure-based hyperelastic models for closed-cell solids</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc Math Phys Eng Sci</addtitle><date>2017-04-01</date><risdate>2017</risdate><volume>473</volume><issue>2200</issue><spage>20170036</spage><epage>20170036</epage><pages>20170036-20170036</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>For cellular bodies involving large elastic deformations, mesoscopic continuum models that take into account the interplay between the geometry and the microstructural responses of the constituents are developed, analysed and compared with finite-element simulations of cellular structures with different architecture. For these models, constitutive restrictions for the physical plausibility of the material responses are established, and global descriptors such as nonlinear elastic and shear moduli and Poisson’s ratio are obtained from the material characteristics of the constituents. Numerical results show that these models capture well the mechanical responses of finite-element simulations for three-dimensional periodic structures of neo-Hookean material with closed cells under large tension. In particular, the mesoscopic models predict the macroscopic stiffening of the structure when the stiffness of the cell-core increases.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>28484340</pmid><doi>10.1098/rspa.2017.0036</doi><tpages>1</tpages><edition>Royal Society (Great Britain)</edition><orcidid>https://orcid.org/0000-0002-6436-8483</orcidid><orcidid>https://orcid.org/0000-0003-0863-3729</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2017-04, Vol.473 (2200), p.20170036-20170036
issn 1364-5021
1471-2946
language eng
recordid cdi_royalsociety_journals_10_1098_rspa_2017_0036
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; Alma/SFX Local Collection
subjects Cellular Solids
Cellular structure
Computer simulation
Constituents
Constitutive Responses
Continuum modeling
Elastic deformation
Finite element method
Finite-Element Simulation
Hyperelastic Model
Large Strain Deformation
Mathematical models
Microstructural Behaviour
Microstructure
Periodic structures
Shear modulus
Stiffening
Stiffness
Three dimensional models
title Microstructure-based hyperelastic models for closed-cell solids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A54%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure-based%20hyperelastic%20models%20for%20closed-cell%20solids&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Mihai,%20L.%20Angela&rft.date=2017-04-01&rft.volume=473&rft.issue=2200&rft.spage=20170036&rft.epage=20170036&rft.pages=20170036-20170036&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2017.0036&rft_dat=%3Cproquest_royal%3E1984322041%3C/proquest_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1984322041&rft_id=info:pmid/28484340&rfr_iscdi=true