Analytical formulation of three-dimensional dynamic homogenization for periodic elastic systems

Homogenization of the equations of motion for a three-dimensional periodic elastic system is considered. Expressions are obtained for the fully dynamic effective material parameters governing the spatially averaged fields by using the plane wave expansion method. The effective equations are of Willi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2012-06, Vol.468 (2142), p.1629-1651
Hauptverfasser: Norris, A. N., Shuvalov, A. L., Kutsenko, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1651
container_issue 2142
container_start_page 1629
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 468
creator Norris, A. N.
Shuvalov, A. L.
Kutsenko, A. A.
description Homogenization of the equations of motion for a three-dimensional periodic elastic system is considered. Expressions are obtained for the fully dynamic effective material parameters governing the spatially averaged fields by using the plane wave expansion method. The effective equations are of Willis form with coupling between momentum and stress and tensorial inertia. The formulation demonstrates that the Willis equations of elastodynamics are closed under homogenization. The effective material parameters are obtained for arbitrary frequency and wavenumber combinations, including but not restricted to Bloch wave branches for wave propagation in the periodic medium. Numerical examples for a one-dimensional system illustrate the frequency dependence of the parameters on Bloch wave branches and provide a comparison with an alternative dynamic effective medium theory, which also reduces to Willis form but with different effective moduli.
doi_str_mv 10.1098/rspa.2011.0698
format Article
fullrecord <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rspa_2011_0698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41511082</jstor_id><sourcerecordid>41511082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-da26bbf63688cdcf3a8f45d84133ce3551f5d6b8e81abfe7f03bbae97f2312be3</originalsourceid><addsrcrecordid>eNp9kc2L1TAUxYsoOI5u3QlduukzN19Nl49BHeGBMqOzDWl64-RN29SkFTt_vXlWBkR0lZBzzu9yT4riJZAdkEa9iWkyO0oAdkQ26lFxBryGijZcPs53JnklCIWnxbOUjoSQRqj6rND70fTr7K3pSxfisPRm9mEsgyvn24hYdX7AMeWnbOjW0QzelrdhCF9x9PebN-fKCaMPXdawNynjyrSmGYf0vHjiTJ_wxe_zvPjy7u3ni8vq8PH9h4v9obIC5Fx1hsq2dZJJpWxnHTPKcdEpDoxZZEKAE51sFSowrcPaEda2BpvaUQa0RXZevN64UwzfFkyzHnyy2PdmxLAkDVISkuGEZ-tus9oYUoro9BT9YOKqgehTk_rUpD41qU9N5gDbAjGseYdgPc6rPoYl5lLSv1N3_0tdXX_af-dSeQqcaqIYEC5IZt37aUNlUfuUFtS_LH_i_572apt2THOIDxtxEABE0axXm-7zt_x40E2807JmtdA3imvCaHN5fbjRV-wnFwe3OA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660068804</pqid></control><display><type>article</type><title>Analytical formulation of three-dimensional dynamic homogenization for periodic elastic systems</title><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Norris, A. N. ; Shuvalov, A. L. ; Kutsenko, A. A.</creator><creatorcontrib>Norris, A. N. ; Shuvalov, A. L. ; Kutsenko, A. A.</creatorcontrib><description>Homogenization of the equations of motion for a three-dimensional periodic elastic system is considered. Expressions are obtained for the fully dynamic effective material parameters governing the spatially averaged fields by using the plane wave expansion method. The effective equations are of Willis form with coupling between momentum and stress and tensorial inertia. The formulation demonstrates that the Willis equations of elastodynamics are closed under homogenization. The effective material parameters are obtained for arbitrary frequency and wavenumber combinations, including but not restricted to Bloch wave branches for wave propagation in the periodic medium. Numerical examples for a one-dimensional system illustrate the frequency dependence of the parameters on Bloch wave branches and provide a comparison with an alternative dynamic effective medium theory, which also reduces to Willis form but with different effective moduli.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2011.0698</identifier><language>eng</language><publisher>The Royal Society Publishing</publisher><subject>Bloch Spectrum ; Bloch waves ; Constitutive equations ; Dynamical systems ; Dynamics ; Elastic systems ; Elastodynamics ; Homogenization ; Homogenizing ; Mathematical analysis ; Mathematical functions ; Mathematical independent variables ; Mathematical models ; Mathematical vectors ; Matrices ; Periodic Elastic Medium ; Scalars ; Tensors ; Waves</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2012-06, Vol.468 (2142), p.1629-1651</ispartof><rights>2012 The Royal Society</rights><rights>This journal is © 2012 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-da26bbf63688cdcf3a8f45d84133ce3551f5d6b8e81abfe7f03bbae97f2312be3</citedby><cites>FETCH-LOGICAL-c516t-da26bbf63688cdcf3a8f45d84133ce3551f5d6b8e81abfe7f03bbae97f2312be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41511082$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41511082$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Norris, A. N.</creatorcontrib><creatorcontrib>Shuvalov, A. L.</creatorcontrib><creatorcontrib>Kutsenko, A. A.</creatorcontrib><title>Analytical formulation of three-dimensional dynamic homogenization for periodic elastic systems</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc. R. Soc. A</addtitle><description>Homogenization of the equations of motion for a three-dimensional periodic elastic system is considered. Expressions are obtained for the fully dynamic effective material parameters governing the spatially averaged fields by using the plane wave expansion method. The effective equations are of Willis form with coupling between momentum and stress and tensorial inertia. The formulation demonstrates that the Willis equations of elastodynamics are closed under homogenization. The effective material parameters are obtained for arbitrary frequency and wavenumber combinations, including but not restricted to Bloch wave branches for wave propagation in the periodic medium. Numerical examples for a one-dimensional system illustrate the frequency dependence of the parameters on Bloch wave branches and provide a comparison with an alternative dynamic effective medium theory, which also reduces to Willis form but with different effective moduli.</description><subject>Bloch Spectrum</subject><subject>Bloch waves</subject><subject>Constitutive equations</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Elastic systems</subject><subject>Elastodynamics</subject><subject>Homogenization</subject><subject>Homogenizing</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematical independent variables</subject><subject>Mathematical models</subject><subject>Mathematical vectors</subject><subject>Matrices</subject><subject>Periodic Elastic Medium</subject><subject>Scalars</subject><subject>Tensors</subject><subject>Waves</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kc2L1TAUxYsoOI5u3QlduukzN19Nl49BHeGBMqOzDWl64-RN29SkFTt_vXlWBkR0lZBzzu9yT4riJZAdkEa9iWkyO0oAdkQ26lFxBryGijZcPs53JnklCIWnxbOUjoSQRqj6rND70fTr7K3pSxfisPRm9mEsgyvn24hYdX7AMeWnbOjW0QzelrdhCF9x9PebN-fKCaMPXdawNynjyrSmGYf0vHjiTJ_wxe_zvPjy7u3ni8vq8PH9h4v9obIC5Fx1hsq2dZJJpWxnHTPKcdEpDoxZZEKAE51sFSowrcPaEda2BpvaUQa0RXZevN64UwzfFkyzHnyy2PdmxLAkDVISkuGEZ-tus9oYUoro9BT9YOKqgehTk_rUpD41qU9N5gDbAjGseYdgPc6rPoYl5lLSv1N3_0tdXX_af-dSeQqcaqIYEC5IZt37aUNlUfuUFtS_LH_i_572apt2THOIDxtxEABE0axXm-7zt_x40E2807JmtdA3imvCaHN5fbjRV-wnFwe3OA</recordid><startdate>20120608</startdate><enddate>20120608</enddate><creator>Norris, A. N.</creator><creator>Shuvalov, A. L.</creator><creator>Kutsenko, A. A.</creator><general>The Royal Society Publishing</general><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120608</creationdate><title>Analytical formulation of three-dimensional dynamic homogenization for periodic elastic systems</title><author>Norris, A. N. ; Shuvalov, A. L. ; Kutsenko, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-da26bbf63688cdcf3a8f45d84133ce3551f5d6b8e81abfe7f03bbae97f2312be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bloch Spectrum</topic><topic>Bloch waves</topic><topic>Constitutive equations</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Elastic systems</topic><topic>Elastodynamics</topic><topic>Homogenization</topic><topic>Homogenizing</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematical independent variables</topic><topic>Mathematical models</topic><topic>Mathematical vectors</topic><topic>Matrices</topic><topic>Periodic Elastic Medium</topic><topic>Scalars</topic><topic>Tensors</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Norris, A. N.</creatorcontrib><creatorcontrib>Shuvalov, A. L.</creatorcontrib><creatorcontrib>Kutsenko, A. A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Norris, A. N.</au><au>Shuvalov, A. L.</au><au>Kutsenko, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical formulation of three-dimensional dynamic homogenization for periodic elastic systems</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc. R. Soc. A</addtitle><date>2012-06-08</date><risdate>2012</risdate><volume>468</volume><issue>2142</issue><spage>1629</spage><epage>1651</epage><pages>1629-1651</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>Homogenization of the equations of motion for a three-dimensional periodic elastic system is considered. Expressions are obtained for the fully dynamic effective material parameters governing the spatially averaged fields by using the plane wave expansion method. The effective equations are of Willis form with coupling between momentum and stress and tensorial inertia. The formulation demonstrates that the Willis equations of elastodynamics are closed under homogenization. The effective material parameters are obtained for arbitrary frequency and wavenumber combinations, including but not restricted to Bloch wave branches for wave propagation in the periodic medium. Numerical examples for a one-dimensional system illustrate the frequency dependence of the parameters on Bloch wave branches and provide a comparison with an alternative dynamic effective medium theory, which also reduces to Willis form but with different effective moduli.</abstract><pub>The Royal Society Publishing</pub><doi>10.1098/rspa.2011.0698</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2012-06, Vol.468 (2142), p.1629-1651
issn 1364-5021
1471-2946
language eng
recordid cdi_royalsociety_journals_10_1098_rspa_2011_0698
source Jstor Complete Legacy; Alma/SFX Local Collection; JSTOR Mathematics & Statistics
subjects Bloch Spectrum
Bloch waves
Constitutive equations
Dynamical systems
Dynamics
Elastic systems
Elastodynamics
Homogenization
Homogenizing
Mathematical analysis
Mathematical functions
Mathematical independent variables
Mathematical models
Mathematical vectors
Matrices
Periodic Elastic Medium
Scalars
Tensors
Waves
title Analytical formulation of three-dimensional dynamic homogenization for periodic elastic systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A45%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20formulation%20of%20three-dimensional%20dynamic%20homogenization%20for%20periodic%20elastic%20systems&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Norris,%20A.%20N.&rft.date=2012-06-08&rft.volume=468&rft.issue=2142&rft.spage=1629&rft.epage=1651&rft.pages=1629-1651&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2011.0698&rft_dat=%3Cjstor_royal%3E41511082%3C/jstor_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660068804&rft_id=info:pmid/&rft_jstor_id=41511082&rfr_iscdi=true