The initial boundary problem for the Korteweg-de Vries equation on the negative quarter-plane

The initial boundary-value problem for the Korteweg-de Vries (KdV) equation on the negative quarter-plane, x < 0 and t > 0, is considered. The formulation of this problem is different to the usual initial boundary-value problem on the positive quarter-plane, for which x > 0 and t > 0. Tw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2002-04, Vol.458 (2020), p.857-871
Hauptverfasser: Marchant, T. R., Smyth, N. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 871
container_issue 2020
container_start_page 857
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 458
creator Marchant, T. R.
Smyth, N. F.
description The initial boundary-value problem for the Korteweg-de Vries (KdV) equation on the negative quarter-plane, x < 0 and t > 0, is considered. The formulation of this problem is different to the usual initial boundary-value problem on the positive quarter-plane, for which x > 0 and t > 0. Two boundary conditions are required at x = 0 for the negative quarter-plane problem, in contrast to the one boundary condition needed at x = 0 for the positive quarter-plane problem. Solutions of the KdV equation on the infinite line, such as the soliton, cnoidal wave, mean height variation and undular bore solution, are used to find approximate solutions to the negative quarter-plane problem. Five qualitatively different types of solution are found, depending on the relation between the initial and boundary values. Excellent comparisons are obtained between these solutions and full numerical solutions of the KdV equation.
doi_str_mv 10.1098/rspa.2001.0868
format Article
fullrecord <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rspa_2001_0868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3067395</jstor_id><sourcerecordid>3067395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-1d1553372138bf4ba3622776d72711735097877bf0226ee8af21e9704e8d54cd3</originalsourceid><addsrcrecordid>eNp9kMtu1DAUhiMEEqWwZcUiL5DB19heoWrETa0KgtIFErKc5GTGQxqnttN2-vQ4Cao0QlSyZB-f7z-XP8teY7TCSMm3PgxmRRDCKyRL-SQ7wkzggihWPk1vWrKCI4KfZy9C2CGEFJfiKPt1sYXc9jZa0-WVG_vG-H0-eFd1cJW3zucxAafOR7iFTdFAfukthByuRxOt6_N0JqKHTYpvIE__ifXF0JkeXmbPWtMFePX3Ps5-fHh_sf5UnH35-Hl9clbUnMlY4AZzTqkgmMqqZZWhJSFClI0gAmNBOVJCClG1iJASQJqWYFACMZANZ3VDj7PVUrf2LgQPrR68vUqbaIz0ZI6ezNGTOXoyJwnoIvBunwZztYW41zs3-j6F_1eFx1Tfvn89wUqVN4xLSxBBSUUxEkRhqu_tMJebAJ0AbUMYQc_YYZt_u75Zuu5CdP5hM4pKQRVP6WJJ2xDh7iFt_G-dAMH1pWRa0fP1-Sn5qdeJf7fwW7vZ3loP-mCbuXnt-gh9nOecJ5Rc6HbsOj00baqAH63g9oMP5kBM_wCL5s84</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The initial boundary problem for the Korteweg-de Vries equation on the negative quarter-plane</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Alma/SFX Local Collection</source><creator>Marchant, T. R. ; Smyth, N. F.</creator><creatorcontrib>Marchant, T. R. ; Smyth, N. F.</creatorcontrib><description>The initial boundary-value problem for the Korteweg-de Vries (KdV) equation on the negative quarter-plane, x &lt; 0 and t &gt; 0, is considered. The formulation of this problem is different to the usual initial boundary-value problem on the positive quarter-plane, for which x &gt; 0 and t &gt; 0. Two boundary conditions are required at x = 0 for the negative quarter-plane problem, in contrast to the one boundary condition needed at x = 0 for the positive quarter-plane problem. Solutions of the KdV equation on the infinite line, such as the soliton, cnoidal wave, mean height variation and undular bore solution, are used to find approximate solutions to the negative quarter-plane problem. Five qualitatively different types of solution are found, depending on the relation between the initial and boundary values. Excellent comparisons are obtained between these solutions and full numerical solutions of the KdV equation.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2001.0868</identifier><language>eng</language><publisher>The Royal Society</publisher><subject>Amplitude ; Approximate values ; Boundary conditions ; Boundary value problems ; Cnoidal waves ; Initial Boundary-Value Problems ; Inverse scattering ; KdV equation ; Mathematics ; Modulation Theory ; Solitons ; Trailing edges ; Waves</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2002-04, Vol.458 (2020), p.857-871</ispartof><rights>Copyright 2002 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-1d1553372138bf4ba3622776d72711735097877bf0226ee8af21e9704e8d54cd3</citedby><cites>FETCH-LOGICAL-c548t-1d1553372138bf4ba3622776d72711735097877bf0226ee8af21e9704e8d54cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3067395$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3067395$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Marchant, T. R.</creatorcontrib><creatorcontrib>Smyth, N. F.</creatorcontrib><title>The initial boundary problem for the Korteweg-de Vries equation on the negative quarter-plane</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><description>The initial boundary-value problem for the Korteweg-de Vries (KdV) equation on the negative quarter-plane, x &lt; 0 and t &gt; 0, is considered. The formulation of this problem is different to the usual initial boundary-value problem on the positive quarter-plane, for which x &gt; 0 and t &gt; 0. Two boundary conditions are required at x = 0 for the negative quarter-plane problem, in contrast to the one boundary condition needed at x = 0 for the positive quarter-plane problem. Solutions of the KdV equation on the infinite line, such as the soliton, cnoidal wave, mean height variation and undular bore solution, are used to find approximate solutions to the negative quarter-plane problem. Five qualitatively different types of solution are found, depending on the relation between the initial and boundary values. Excellent comparisons are obtained between these solutions and full numerical solutions of the KdV equation.</description><subject>Amplitude</subject><subject>Approximate values</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Cnoidal waves</subject><subject>Initial Boundary-Value Problems</subject><subject>Inverse scattering</subject><subject>KdV equation</subject><subject>Mathematics</subject><subject>Modulation Theory</subject><subject>Solitons</subject><subject>Trailing edges</subject><subject>Waves</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp9kMtu1DAUhiMEEqWwZcUiL5DB19heoWrETa0KgtIFErKc5GTGQxqnttN2-vQ4Cao0QlSyZB-f7z-XP8teY7TCSMm3PgxmRRDCKyRL-SQ7wkzggihWPk1vWrKCI4KfZy9C2CGEFJfiKPt1sYXc9jZa0-WVG_vG-H0-eFd1cJW3zucxAafOR7iFTdFAfukthByuRxOt6_N0JqKHTYpvIE__ifXF0JkeXmbPWtMFePX3Ps5-fHh_sf5UnH35-Hl9clbUnMlY4AZzTqkgmMqqZZWhJSFClI0gAmNBOVJCClG1iJASQJqWYFACMZANZ3VDj7PVUrf2LgQPrR68vUqbaIz0ZI6ezNGTOXoyJwnoIvBunwZztYW41zs3-j6F_1eFx1Tfvn89wUqVN4xLSxBBSUUxEkRhqu_tMJebAJ0AbUMYQc_YYZt_u75Zuu5CdP5hM4pKQRVP6WJJ2xDh7iFt_G-dAMH1pWRa0fP1-Sn5qdeJf7fwW7vZ3loP-mCbuXnt-gh9nOecJ5Rc6HbsOj00baqAH63g9oMP5kBM_wCL5s84</recordid><startdate>20020408</startdate><enddate>20020408</enddate><creator>Marchant, T. R.</creator><creator>Smyth, N. F.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020408</creationdate><title>The initial boundary problem for the Korteweg-de Vries equation on the negative quarter-plane</title><author>Marchant, T. R. ; Smyth, N. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-1d1553372138bf4ba3622776d72711735097877bf0226ee8af21e9704e8d54cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Amplitude</topic><topic>Approximate values</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Cnoidal waves</topic><topic>Initial Boundary-Value Problems</topic><topic>Inverse scattering</topic><topic>KdV equation</topic><topic>Mathematics</topic><topic>Modulation Theory</topic><topic>Solitons</topic><topic>Trailing edges</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marchant, T. R.</creatorcontrib><creatorcontrib>Smyth, N. F.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marchant, T. R.</au><au>Smyth, N. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The initial boundary problem for the Korteweg-de Vries equation on the negative quarter-plane</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><date>2002-04-08</date><risdate>2002</risdate><volume>458</volume><issue>2020</issue><spage>857</spage><epage>871</epage><pages>857-871</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>The initial boundary-value problem for the Korteweg-de Vries (KdV) equation on the negative quarter-plane, x &lt; 0 and t &gt; 0, is considered. The formulation of this problem is different to the usual initial boundary-value problem on the positive quarter-plane, for which x &gt; 0 and t &gt; 0. Two boundary conditions are required at x = 0 for the negative quarter-plane problem, in contrast to the one boundary condition needed at x = 0 for the positive quarter-plane problem. Solutions of the KdV equation on the infinite line, such as the soliton, cnoidal wave, mean height variation and undular bore solution, are used to find approximate solutions to the negative quarter-plane problem. Five qualitatively different types of solution are found, depending on the relation between the initial and boundary values. Excellent comparisons are obtained between these solutions and full numerical solutions of the KdV equation.</abstract><pub>The Royal Society</pub><doi>10.1098/rspa.2001.0868</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2002-04, Vol.458 (2020), p.857-871
issn 1364-5021
1471-2946
language eng
recordid cdi_royalsociety_journals_10_1098_rspa_2001_0868
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Alma/SFX Local Collection
subjects Amplitude
Approximate values
Boundary conditions
Boundary value problems
Cnoidal waves
Initial Boundary-Value Problems
Inverse scattering
KdV equation
Mathematics
Modulation Theory
Solitons
Trailing edges
Waves
title The initial boundary problem for the Korteweg-de Vries equation on the negative quarter-plane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A51%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20initial%20boundary%20problem%20for%20the%20Korteweg-de%20Vries%20equation%20on%20the%20negative%20quarter-plane&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Marchant,%20T.%20R.&rft.date=2002-04-08&rft.volume=458&rft.issue=2020&rft.spage=857&rft.epage=871&rft.pages=857-871&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2001.0868&rft_dat=%3Cjstor_royal%3E3067395%3C/jstor_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=3067395&rfr_iscdi=true