The initial boundary problem for the Korteweg-de Vries equation on the negative quarter-plane
The initial boundary-value problem for the Korteweg-de Vries (KdV) equation on the negative quarter-plane, x < 0 and t > 0, is considered. The formulation of this problem is different to the usual initial boundary-value problem on the positive quarter-plane, for which x > 0 and t > 0. Tw...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2002-04, Vol.458 (2020), p.857-871 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 871 |
---|---|
container_issue | 2020 |
container_start_page | 857 |
container_title | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
container_volume | 458 |
creator | Marchant, T. R. Smyth, N. F. |
description | The initial boundary-value problem for the Korteweg-de Vries (KdV) equation on the negative quarter-plane, x < 0 and t > 0, is considered. The formulation of this problem is different to the usual initial boundary-value problem on the positive quarter-plane, for which x > 0 and t > 0. Two boundary conditions are required at x = 0 for the negative quarter-plane problem, in contrast to the one boundary condition needed at x = 0 for the positive quarter-plane problem. Solutions of the KdV equation on the infinite line, such as the soliton, cnoidal wave, mean height variation and undular bore solution, are used to find approximate solutions to the negative quarter-plane problem. Five qualitatively different types of solution are found, depending on the relation between the initial and boundary values. Excellent comparisons are obtained between these solutions and full numerical solutions of the KdV equation. |
doi_str_mv | 10.1098/rspa.2001.0868 |
format | Article |
fullrecord | <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rspa_2001_0868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3067395</jstor_id><sourcerecordid>3067395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-1d1553372138bf4ba3622776d72711735097877bf0226ee8af21e9704e8d54cd3</originalsourceid><addsrcrecordid>eNp9kMtu1DAUhiMEEqWwZcUiL5DB19heoWrETa0KgtIFErKc5GTGQxqnttN2-vQ4Cao0QlSyZB-f7z-XP8teY7TCSMm3PgxmRRDCKyRL-SQ7wkzggihWPk1vWrKCI4KfZy9C2CGEFJfiKPt1sYXc9jZa0-WVG_vG-H0-eFd1cJW3zucxAafOR7iFTdFAfukthByuRxOt6_N0JqKHTYpvIE__ifXF0JkeXmbPWtMFePX3Ps5-fHh_sf5UnH35-Hl9clbUnMlY4AZzTqkgmMqqZZWhJSFClI0gAmNBOVJCClG1iJASQJqWYFACMZANZ3VDj7PVUrf2LgQPrR68vUqbaIz0ZI6ezNGTOXoyJwnoIvBunwZztYW41zs3-j6F_1eFx1Tfvn89wUqVN4xLSxBBSUUxEkRhqu_tMJebAJ0AbUMYQc_YYZt_u75Zuu5CdP5hM4pKQRVP6WJJ2xDh7iFt_G-dAMH1pWRa0fP1-Sn5qdeJf7fwW7vZ3loP-mCbuXnt-gh9nOecJ5Rc6HbsOj00baqAH63g9oMP5kBM_wCL5s84</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The initial boundary problem for the Korteweg-de Vries equation on the negative quarter-plane</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Alma/SFX Local Collection</source><creator>Marchant, T. R. ; Smyth, N. F.</creator><creatorcontrib>Marchant, T. R. ; Smyth, N. F.</creatorcontrib><description>The initial boundary-value problem for the Korteweg-de Vries (KdV) equation on the negative quarter-plane, x < 0 and t > 0, is considered. The formulation of this problem is different to the usual initial boundary-value problem on the positive quarter-plane, for which x > 0 and t > 0. Two boundary conditions are required at x = 0 for the negative quarter-plane problem, in contrast to the one boundary condition needed at x = 0 for the positive quarter-plane problem. Solutions of the KdV equation on the infinite line, such as the soliton, cnoidal wave, mean height variation and undular bore solution, are used to find approximate solutions to the negative quarter-plane problem. Five qualitatively different types of solution are found, depending on the relation between the initial and boundary values. Excellent comparisons are obtained between these solutions and full numerical solutions of the KdV equation.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2001.0868</identifier><language>eng</language><publisher>The Royal Society</publisher><subject>Amplitude ; Approximate values ; Boundary conditions ; Boundary value problems ; Cnoidal waves ; Initial Boundary-Value Problems ; Inverse scattering ; KdV equation ; Mathematics ; Modulation Theory ; Solitons ; Trailing edges ; Waves</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2002-04, Vol.458 (2020), p.857-871</ispartof><rights>Copyright 2002 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-1d1553372138bf4ba3622776d72711735097877bf0226ee8af21e9704e8d54cd3</citedby><cites>FETCH-LOGICAL-c548t-1d1553372138bf4ba3622776d72711735097877bf0226ee8af21e9704e8d54cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3067395$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3067395$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Marchant, T. R.</creatorcontrib><creatorcontrib>Smyth, N. F.</creatorcontrib><title>The initial boundary problem for the Korteweg-de Vries equation on the negative quarter-plane</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><description>The initial boundary-value problem for the Korteweg-de Vries (KdV) equation on the negative quarter-plane, x < 0 and t > 0, is considered. The formulation of this problem is different to the usual initial boundary-value problem on the positive quarter-plane, for which x > 0 and t > 0. Two boundary conditions are required at x = 0 for the negative quarter-plane problem, in contrast to the one boundary condition needed at x = 0 for the positive quarter-plane problem. Solutions of the KdV equation on the infinite line, such as the soliton, cnoidal wave, mean height variation and undular bore solution, are used to find approximate solutions to the negative quarter-plane problem. Five qualitatively different types of solution are found, depending on the relation between the initial and boundary values. Excellent comparisons are obtained between these solutions and full numerical solutions of the KdV equation.</description><subject>Amplitude</subject><subject>Approximate values</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Cnoidal waves</subject><subject>Initial Boundary-Value Problems</subject><subject>Inverse scattering</subject><subject>KdV equation</subject><subject>Mathematics</subject><subject>Modulation Theory</subject><subject>Solitons</subject><subject>Trailing edges</subject><subject>Waves</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp9kMtu1DAUhiMEEqWwZcUiL5DB19heoWrETa0KgtIFErKc5GTGQxqnttN2-vQ4Cao0QlSyZB-f7z-XP8teY7TCSMm3PgxmRRDCKyRL-SQ7wkzggihWPk1vWrKCI4KfZy9C2CGEFJfiKPt1sYXc9jZa0-WVG_vG-H0-eFd1cJW3zucxAafOR7iFTdFAfukthByuRxOt6_N0JqKHTYpvIE__ifXF0JkeXmbPWtMFePX3Ps5-fHh_sf5UnH35-Hl9clbUnMlY4AZzTqkgmMqqZZWhJSFClI0gAmNBOVJCClG1iJASQJqWYFACMZANZ3VDj7PVUrf2LgQPrR68vUqbaIz0ZI6ezNGTOXoyJwnoIvBunwZztYW41zs3-j6F_1eFx1Tfvn89wUqVN4xLSxBBSUUxEkRhqu_tMJebAJ0AbUMYQc_YYZt_u75Zuu5CdP5hM4pKQRVP6WJJ2xDh7iFt_G-dAMH1pWRa0fP1-Sn5qdeJf7fwW7vZ3loP-mCbuXnt-gh9nOecJ5Rc6HbsOj00baqAH63g9oMP5kBM_wCL5s84</recordid><startdate>20020408</startdate><enddate>20020408</enddate><creator>Marchant, T. R.</creator><creator>Smyth, N. F.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020408</creationdate><title>The initial boundary problem for the Korteweg-de Vries equation on the negative quarter-plane</title><author>Marchant, T. R. ; Smyth, N. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-1d1553372138bf4ba3622776d72711735097877bf0226ee8af21e9704e8d54cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Amplitude</topic><topic>Approximate values</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Cnoidal waves</topic><topic>Initial Boundary-Value Problems</topic><topic>Inverse scattering</topic><topic>KdV equation</topic><topic>Mathematics</topic><topic>Modulation Theory</topic><topic>Solitons</topic><topic>Trailing edges</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marchant, T. R.</creatorcontrib><creatorcontrib>Smyth, N. F.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marchant, T. R.</au><au>Smyth, N. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The initial boundary problem for the Korteweg-de Vries equation on the negative quarter-plane</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><date>2002-04-08</date><risdate>2002</risdate><volume>458</volume><issue>2020</issue><spage>857</spage><epage>871</epage><pages>857-871</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>The initial boundary-value problem for the Korteweg-de Vries (KdV) equation on the negative quarter-plane, x < 0 and t > 0, is considered. The formulation of this problem is different to the usual initial boundary-value problem on the positive quarter-plane, for which x > 0 and t > 0. Two boundary conditions are required at x = 0 for the negative quarter-plane problem, in contrast to the one boundary condition needed at x = 0 for the positive quarter-plane problem. Solutions of the KdV equation on the infinite line, such as the soliton, cnoidal wave, mean height variation and undular bore solution, are used to find approximate solutions to the negative quarter-plane problem. Five qualitatively different types of solution are found, depending on the relation between the initial and boundary values. Excellent comparisons are obtained between these solutions and full numerical solutions of the KdV equation.</abstract><pub>The Royal Society</pub><doi>10.1098/rspa.2001.0868</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2002-04, Vol.458 (2020), p.857-871 |
issn | 1364-5021 1471-2946 |
language | eng |
recordid | cdi_royalsociety_journals_10_1098_rspa_2001_0868 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Alma/SFX Local Collection |
subjects | Amplitude Approximate values Boundary conditions Boundary value problems Cnoidal waves Initial Boundary-Value Problems Inverse scattering KdV equation Mathematics Modulation Theory Solitons Trailing edges Waves |
title | The initial boundary problem for the Korteweg-de Vries equation on the negative quarter-plane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A51%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20initial%20boundary%20problem%20for%20the%20Korteweg-de%20Vries%20equation%20on%20the%20negative%20quarter-plane&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Marchant,%20T.%20R.&rft.date=2002-04-08&rft.volume=458&rft.issue=2020&rft.spage=857&rft.epage=871&rft.pages=857-871&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2001.0868&rft_dat=%3Cjstor_royal%3E3067395%3C/jstor_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=3067395&rfr_iscdi=true |