Twistor Theory and the Einstein Equations

R. Penrose (in Advances in twistor theory, pp. 168‒176, and in Cosmology and gravitation; Nato advanced study institute series, pp. 287‒316 (1980). New York: Plenum Press) has argued that the goal of twistor theory with regard to the vacuum Einstein equations ought to consist of some kind of unifica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences Mathematical and physical sciences, 1985-05, Vol.399 (1816), p.111-134
1. Verfasser: Law, P. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134
container_issue 1816
container_start_page 111
container_title Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences
container_volume 399
creator Law, P. R.
description R. Penrose (in Advances in twistor theory, pp. 168‒176, and in Cosmology and gravitation; Nato advanced study institute series, pp. 287‒316 (1980). New York: Plenum Press) has argued that the goal of twistor theory with regard to the vacuum Einstein equations ought to consist of some kind of unification of twistor-theoretic descriptions of anti-self-dual (a. s. d. ) and self-dual (s. d. ) space-times. S. d. space‒times currently possess a description only in terms of dual twistor space, however, rather than twistor space. In this paper, suggestions due to Penrose for providing a purely twistor space description of s. d. space‒times are investigated. It is shown how the points of certain s. d. space‒times define mappings on twistor space and the geometry of these mappings is studied. The families of mappings for two particular s. d. space‒times are presented explicitly.
doi_str_mv 10.1098/rspa.1985.0050
format Article
fullrecord <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rspa_1985_0050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2397704</jstor_id><sourcerecordid>2397704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-1432e7f68f8c06a7596db84e3ccfcc9c1e7a3450698ad40570756e95d54c19f53</originalsourceid><addsrcrecordid>eNp9Uc2L1DAUL6Lgunr15KFXDx3zmu-TLMs4CgOKjuLtEdPUyTg2Nem41r_etJWFQdxTXni_z6QongJZAdHqRUy9WYFWfEUIJ_eKC2ASqlozcT_PVLCKkxoeFo9SOhBCNFfyoni-u_FpCLHc7V2IY2m6phz2rlz7Lg3Od-X6x8kMPnTpcfGgNcfknvw9L4uPr9a769fV9u3mzfXVtrJMqqECRmsnW6FaZYkwkmvRfFHMUWtba7UFJw1lnAitTMMIl0Ry4TRvOLOgW04vi9Wia2NIKboW--i_mzgiEJyK4lQUp6I4Fc0EuhBiGHOwYL0bRjyEU-zy9f-sdBfr_Yd3V6CF_km19qBAIFEUiMxjjb99P8tNAMwA9CmdHM6wc5t_XZ8trofp0W-b1VRLSVheV8s6_4n7dbs28RsKSSXHT4rhZyo139Yb3GT8ywW_91_3Nz46PGszm9vQDa4b5pxzQgDA9nQ8Yt-0WQHuVAhjH5M5I9M_TMK8yQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Twistor Theory and the Einstein Equations</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Law, P. R.</creator><creatorcontrib>Law, P. R.</creatorcontrib><description>R. Penrose (in Advances in twistor theory, pp. 168‒176, and in Cosmology and gravitation; Nato advanced study institute series, pp. 287‒316 (1980). New York: Plenum Press) has argued that the goal of twistor theory with regard to the vacuum Einstein equations ought to consist of some kind of unification of twistor-theoretic descriptions of anti-self-dual (a. s. d. ) and self-dual (s. d. ) space-times. S. d. space‒times currently possess a description only in terms of dual twistor space, however, rather than twistor space. In this paper, suggestions due to Penrose for providing a purely twistor space description of s. d. space‒times are investigated. It is shown how the points of certain s. d. space‒times define mappings on twistor space and the geometry of these mappings is studied. The families of mappings for two particular s. d. space‒times are presented explicitly.</description><identifier>ISSN: 1364-5021</identifier><identifier>ISSN: 0080-4630</identifier><identifier>EISSN: 1471-2946</identifier><identifier>EISSN: 2053-9169</identifier><identifier>DOI: 10.1098/rspa.1985.0050</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Ambiguity ; Coordinate systems ; Dyadic relations ; Einstein equations ; Geometric lines ; Geometric planes ; Loci ; Mathematical duality ; Spacetime ; Tangents</subject><ispartof>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences, 1985-05, Vol.399 (1816), p.111-134</ispartof><rights>Copyright 1985 The Royal Society</rights><rights>Scanned images copyright © 2017, Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-1432e7f68f8c06a7596db84e3ccfcc9c1e7a3450698ad40570756e95d54c19f53</citedby><cites>FETCH-LOGICAL-c478t-1432e7f68f8c06a7596db84e3ccfcc9c1e7a3450698ad40570756e95d54c19f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2397704$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2397704$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Law, P. R.</creatorcontrib><title>Twistor Theory and the Einstein Equations</title><title>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences</title><addtitle>Proc. R. Soc. Lond. A</addtitle><addtitle>Proc. R. Soc. Lond. A</addtitle><description>R. Penrose (in Advances in twistor theory, pp. 168‒176, and in Cosmology and gravitation; Nato advanced study institute series, pp. 287‒316 (1980). New York: Plenum Press) has argued that the goal of twistor theory with regard to the vacuum Einstein equations ought to consist of some kind of unification of twistor-theoretic descriptions of anti-self-dual (a. s. d. ) and self-dual (s. d. ) space-times. S. d. space‒times currently possess a description only in terms of dual twistor space, however, rather than twistor space. In this paper, suggestions due to Penrose for providing a purely twistor space description of s. d. space‒times are investigated. It is shown how the points of certain s. d. space‒times define mappings on twistor space and the geometry of these mappings is studied. The families of mappings for two particular s. d. space‒times are presented explicitly.</description><subject>Ambiguity</subject><subject>Coordinate systems</subject><subject>Dyadic relations</subject><subject>Einstein equations</subject><subject>Geometric lines</subject><subject>Geometric planes</subject><subject>Loci</subject><subject>Mathematical duality</subject><subject>Spacetime</subject><subject>Tangents</subject><issn>1364-5021</issn><issn>0080-4630</issn><issn>1471-2946</issn><issn>2053-9169</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNp9Uc2L1DAUL6Lgunr15KFXDx3zmu-TLMs4CgOKjuLtEdPUyTg2Nem41r_etJWFQdxTXni_z6QongJZAdHqRUy9WYFWfEUIJ_eKC2ASqlozcT_PVLCKkxoeFo9SOhBCNFfyoni-u_FpCLHc7V2IY2m6phz2rlz7Lg3Od-X6x8kMPnTpcfGgNcfknvw9L4uPr9a769fV9u3mzfXVtrJMqqECRmsnW6FaZYkwkmvRfFHMUWtba7UFJw1lnAitTMMIl0Ry4TRvOLOgW04vi9Wia2NIKboW--i_mzgiEJyK4lQUp6I4Fc0EuhBiGHOwYL0bRjyEU-zy9f-sdBfr_Yd3V6CF_km19qBAIFEUiMxjjb99P8tNAMwA9CmdHM6wc5t_XZ8trofp0W-b1VRLSVheV8s6_4n7dbs28RsKSSXHT4rhZyo139Yb3GT8ywW_91_3Nz46PGszm9vQDa4b5pxzQgDA9nQ8Yt-0WQHuVAhjH5M5I9M_TMK8yQ</recordid><startdate>19850508</startdate><enddate>19850508</enddate><creator>Law, P. R.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19850508</creationdate><title>Twistor Theory and the Einstein Equations</title><author>Law, P. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-1432e7f68f8c06a7596db84e3ccfcc9c1e7a3450698ad40570756e95d54c19f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Ambiguity</topic><topic>Coordinate systems</topic><topic>Dyadic relations</topic><topic>Einstein equations</topic><topic>Geometric lines</topic><topic>Geometric planes</topic><topic>Loci</topic><topic>Mathematical duality</topic><topic>Spacetime</topic><topic>Tangents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Law, P. R.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Law, P. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Twistor Theory and the Einstein Equations</atitle><jtitle>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences</jtitle><stitle>Proc. R. Soc. Lond. A</stitle><addtitle>Proc. R. Soc. Lond. A</addtitle><date>1985-05-08</date><risdate>1985</risdate><volume>399</volume><issue>1816</issue><spage>111</spage><epage>134</epage><pages>111-134</pages><issn>1364-5021</issn><issn>0080-4630</issn><eissn>1471-2946</eissn><eissn>2053-9169</eissn><abstract>R. Penrose (in Advances in twistor theory, pp. 168‒176, and in Cosmology and gravitation; Nato advanced study institute series, pp. 287‒316 (1980). New York: Plenum Press) has argued that the goal of twistor theory with regard to the vacuum Einstein equations ought to consist of some kind of unification of twistor-theoretic descriptions of anti-self-dual (a. s. d. ) and self-dual (s. d. ) space-times. S. d. space‒times currently possess a description only in terms of dual twistor space, however, rather than twistor space. In this paper, suggestions due to Penrose for providing a purely twistor space description of s. d. space‒times are investigated. It is shown how the points of certain s. d. space‒times define mappings on twistor space and the geometry of these mappings is studied. The families of mappings for two particular s. d. space‒times are presented explicitly.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rspa.1985.0050</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences, 1985-05, Vol.399 (1816), p.111-134
issn 1364-5021
0080-4630
1471-2946
2053-9169
language eng
recordid cdi_royalsociety_journals_10_1098_rspa_1985_0050
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Ambiguity
Coordinate systems
Dyadic relations
Einstein equations
Geometric lines
Geometric planes
Loci
Mathematical duality
Spacetime
Tangents
title Twistor Theory and the Einstein Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A17%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Twistor%20Theory%20and%20the%20Einstein%20Equations&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20London.%20Series%20A,%20Mathematical%20and%20physical%20sciences&rft.au=Law,%20P.%20R.&rft.date=1985-05-08&rft.volume=399&rft.issue=1816&rft.spage=111&rft.epage=134&rft.pages=111-134&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.1985.0050&rft_dat=%3Cjstor_royal%3E2397704%3C/jstor_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2397704&rfr_iscdi=true