Vacancy Clusters and Loops in Ion Bombarded Copper

Copper foils of 1000 Å thickness have been bombarded with 150 keV zinc ions, in the [011] direction, at 300 °K, and examined by quantitative electron microscopy. The damage has an attenuation length of 3000 Å. Each stopped ion creates, on average, three vacancy clusters or loops, the interstitials e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proc. Roy. Soc. (London), Ser. A Ser. A, 1966-01, Vol.289 (1418), p.353-365
Hauptverfasser: Hesketh, R. V., Rickards, G. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 365
container_issue 1418
container_start_page 353
container_title Proc. Roy. Soc. (London), Ser. A
container_volume 289
creator Hesketh, R. V.
Rickards, G. K.
description Copper foils of 1000 Å thickness have been bombarded with 150 keV zinc ions, in the [011] direction, at 300 °K, and examined by quantitative electron microscopy. The damage has an attenuation length of 3000 Å. Each stopped ion creates, on average, three vacancy clusters or loops, the interstitials either reaching the foil surfaces or remaining invisible. Of the created vacancies 80 to 100 % survive. Ions create, on average, three secondary knockons in each cascade, and those of energy greater than 20 keV escape to form further cascades. The largest loops (ca. 1200 vacancies) correspond to a single cascade from a 65 keV ion. The smallest clusters (250 to 300 vacancies) correspond to the hard sphere radius at which further knockons are too large to escape from the cascade. These clusters are well above the visibility limit. Clusters and loops are formed at their final size, and there is no general growth during subsequent irradiation. The cluster configuration is relevant to irradiation creep and irradiation hardening; the lattice strain at the edge of a cluster is ca. 5 %, within a cluster only one lattice site in four is vacant, and each vacancy is bound to the cluster with an energy of ca. 0·15 eV. This is the minimum energy configuration for up to 600 vacancies. A cluster is not a void (it does not possess a free surface) nor is it a tetrahedron of stacking faults. Experiment and theory agree that these require higher energies. Clusters of between 600 and 900 vacancies collapse to sessile loops, thereby lowering the strain energy in the surrounding lattice. Larger clusters collapse to prismatic loops. This collapse does not require the nucleation of a Shockley partial dislocation.
doi_str_mv 10.1098/rspa.1966.0016
format Article
fullrecord <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rspa_1966_0016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2415126</jstor_id><sourcerecordid>2415126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-b37a8af692824d0d291ac09051485200c5c089baff2f574158931f8be332af73</originalsourceid><addsrcrecordid>eNp9Uc9v0zAUjhBIjMGVE4eIe8qzHTv2CY0KxqASaEwDcXlyHZu6dHFkp0D463EaNKlC7GRb7_v1PhfFUwILAkq-iKnXC6KEWAAQca84IXVDKqpqcT_fmagrDpQ8LB6ltAUAxWVzUtBrbXRnxnK526fBxlTqri1XIfSp9F15EbryVbhZ69jatlyGvrfxcfHA6V2yT_6ep8XVm9dXy7fV6sP5xfJsVRkOfKjWrNFSO6GopHULLVVEG1DASS05BTDcgFRr7Rx1vKkJl4oRJ9eWMapdw06L57NsSIPHZPxgzcaErrNmwJoLEGwCLWaQiSGlaB320d_oOCIBnFrBqRWcWsGplUxIMyGGMYcPxtthxG3Yxy4_8fLTxzOimPxBpfKkJhJBMgINAS7xt-8PchMAMwB9SnuLB9ixzb-u7C7X_2Z9NrO2aQjxdjOauyJ0Glfz2OeP-3U71vE7ioY1HK9ljV_ffZGX558Fvs_4lzN-479tfvpo8SjNwTz3O9huOGx32Itxhm6_22HfuqxA7lQIYx-TPiKzPyAjyrs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vacancy Clusters and Loops in Ion Bombarded Copper</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Hesketh, R. V. ; Rickards, G. K.</creator><creatorcontrib>Hesketh, R. V. ; Rickards, G. K. ; Berkeley Nuclear Labs., Eng</creatorcontrib><description>Copper foils of 1000 Å thickness have been bombarded with 150 keV zinc ions, in the [011] direction, at 300 °K, and examined by quantitative electron microscopy. The damage has an attenuation length of 3000 Å. Each stopped ion creates, on average, three vacancy clusters or loops, the interstitials either reaching the foil surfaces or remaining invisible. Of the created vacancies 80 to 100 % survive. Ions create, on average, three secondary knockons in each cascade, and those of energy greater than 20 keV escape to form further cascades. The largest loops (ca. 1200 vacancies) correspond to a single cascade from a 65 keV ion. The smallest clusters (250 to 300 vacancies) correspond to the hard sphere radius at which further knockons are too large to escape from the cascade. These clusters are well above the visibility limit. Clusters and loops are formed at their final size, and there is no general growth during subsequent irradiation. The cluster configuration is relevant to irradiation creep and irradiation hardening; the lattice strain at the edge of a cluster is ca. 5 %, within a cluster only one lattice site in four is vacant, and each vacancy is bound to the cluster with an energy of ca. 0·15 eV. This is the minimum energy configuration for up to 600 vacancies. A cluster is not a void (it does not possess a free surface) nor is it a tetrahedron of stacking faults. Experiment and theory agree that these require higher energies. Clusters of between 600 and 900 vacancies collapse to sessile loops, thereby lowering the strain energy in the surrounding lattice. Larger clusters collapse to prismatic loops. This collapse does not require the nucleation of a Shockley partial dislocation.</description><identifier>ISSN: 1364-5021</identifier><identifier>ISSN: 0080-4630</identifier><identifier>EISSN: 1471-2946</identifier><identifier>EISSN: 2053-9169</identifier><identifier>DOI: 10.1098/rspa.1966.0016</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Binding energy ; CONFIGURATION ; COPPER ; DEFECTS ; DISLOCATIONS ; DISTRIBUTION ; ELECTRON MICROSCOPY ; FOILS ; Histograms ; IONS ; Irradiation ; MEASURED VALUES ; METALS, CERAMICS, AND OTHER MATERIALS ; Microdensitometers ; Neutrons ; Radiation Effects ; Temperature dependence ; Tetrahedrons ; THICKNESS ; VACANCIES ; Wave diffraction ; ZINC</subject><ispartof>Proc. Roy. Soc. (London), Ser. A, 1966-01, Vol.289 (1418), p.353-365</ispartof><rights>Scanned images copyright © 2017, Royal Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-b37a8af692824d0d291ac09051485200c5c089baff2f574158931f8be332af73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2415126$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2415126$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,881,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4560637$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hesketh, R. V.</creatorcontrib><creatorcontrib>Rickards, G. K.</creatorcontrib><creatorcontrib>Berkeley Nuclear Labs., Eng</creatorcontrib><title>Vacancy Clusters and Loops in Ion Bombarded Copper</title><title>Proc. Roy. Soc. (London), Ser. A</title><addtitle>Proc. R. Soc. Lond. A</addtitle><addtitle>Proc. R. Soc. Lond. A</addtitle><description>Copper foils of 1000 Å thickness have been bombarded with 150 keV zinc ions, in the [011] direction, at 300 °K, and examined by quantitative electron microscopy. The damage has an attenuation length of 3000 Å. Each stopped ion creates, on average, three vacancy clusters or loops, the interstitials either reaching the foil surfaces or remaining invisible. Of the created vacancies 80 to 100 % survive. Ions create, on average, three secondary knockons in each cascade, and those of energy greater than 20 keV escape to form further cascades. The largest loops (ca. 1200 vacancies) correspond to a single cascade from a 65 keV ion. The smallest clusters (250 to 300 vacancies) correspond to the hard sphere radius at which further knockons are too large to escape from the cascade. These clusters are well above the visibility limit. Clusters and loops are formed at their final size, and there is no general growth during subsequent irradiation. The cluster configuration is relevant to irradiation creep and irradiation hardening; the lattice strain at the edge of a cluster is ca. 5 %, within a cluster only one lattice site in four is vacant, and each vacancy is bound to the cluster with an energy of ca. 0·15 eV. This is the minimum energy configuration for up to 600 vacancies. A cluster is not a void (it does not possess a free surface) nor is it a tetrahedron of stacking faults. Experiment and theory agree that these require higher energies. Clusters of between 600 and 900 vacancies collapse to sessile loops, thereby lowering the strain energy in the surrounding lattice. Larger clusters collapse to prismatic loops. This collapse does not require the nucleation of a Shockley partial dislocation.</description><subject>Binding energy</subject><subject>CONFIGURATION</subject><subject>COPPER</subject><subject>DEFECTS</subject><subject>DISLOCATIONS</subject><subject>DISTRIBUTION</subject><subject>ELECTRON MICROSCOPY</subject><subject>FOILS</subject><subject>Histograms</subject><subject>IONS</subject><subject>Irradiation</subject><subject>MEASURED VALUES</subject><subject>METALS, CERAMICS, AND OTHER MATERIALS</subject><subject>Microdensitometers</subject><subject>Neutrons</subject><subject>Radiation Effects</subject><subject>Temperature dependence</subject><subject>Tetrahedrons</subject><subject>THICKNESS</subject><subject>VACANCIES</subject><subject>Wave diffraction</subject><subject>ZINC</subject><issn>1364-5021</issn><issn>0080-4630</issn><issn>1471-2946</issn><issn>2053-9169</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1966</creationdate><recordtype>article</recordtype><recordid>eNp9Uc9v0zAUjhBIjMGVE4eIe8qzHTv2CY0KxqASaEwDcXlyHZu6dHFkp0D463EaNKlC7GRb7_v1PhfFUwILAkq-iKnXC6KEWAAQca84IXVDKqpqcT_fmagrDpQ8LB6ltAUAxWVzUtBrbXRnxnK526fBxlTqri1XIfSp9F15EbryVbhZ69jatlyGvrfxcfHA6V2yT_6ep8XVm9dXy7fV6sP5xfJsVRkOfKjWrNFSO6GopHULLVVEG1DASS05BTDcgFRr7Rx1vKkJl4oRJ9eWMapdw06L57NsSIPHZPxgzcaErrNmwJoLEGwCLWaQiSGlaB320d_oOCIBnFrBqRWcWsGplUxIMyGGMYcPxtthxG3Yxy4_8fLTxzOimPxBpfKkJhJBMgINAS7xt-8PchMAMwB9SnuLB9ixzb-u7C7X_2Z9NrO2aQjxdjOauyJ0Glfz2OeP-3U71vE7ioY1HK9ljV_ffZGX558Fvs_4lzN-479tfvpo8SjNwTz3O9huOGx32Itxhm6_22HfuqxA7lQIYx-TPiKzPyAjyrs</recordid><startdate>19660125</startdate><enddate>19660125</enddate><creator>Hesketh, R. V.</creator><creator>Rickards, G. K.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19660125</creationdate><title>Vacancy Clusters and Loops in Ion Bombarded Copper</title><author>Hesketh, R. V. ; Rickards, G. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-b37a8af692824d0d291ac09051485200c5c089baff2f574158931f8be332af73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1966</creationdate><topic>Binding energy</topic><topic>CONFIGURATION</topic><topic>COPPER</topic><topic>DEFECTS</topic><topic>DISLOCATIONS</topic><topic>DISTRIBUTION</topic><topic>ELECTRON MICROSCOPY</topic><topic>FOILS</topic><topic>Histograms</topic><topic>IONS</topic><topic>Irradiation</topic><topic>MEASURED VALUES</topic><topic>METALS, CERAMICS, AND OTHER MATERIALS</topic><topic>Microdensitometers</topic><topic>Neutrons</topic><topic>Radiation Effects</topic><topic>Temperature dependence</topic><topic>Tetrahedrons</topic><topic>THICKNESS</topic><topic>VACANCIES</topic><topic>Wave diffraction</topic><topic>ZINC</topic><toplevel>online_resources</toplevel><creatorcontrib>Hesketh, R. V.</creatorcontrib><creatorcontrib>Rickards, G. K.</creatorcontrib><creatorcontrib>Berkeley Nuclear Labs., Eng</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Proc. Roy. Soc. (London), Ser. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hesketh, R. V.</au><au>Rickards, G. K.</au><aucorp>Berkeley Nuclear Labs., Eng</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vacancy Clusters and Loops in Ion Bombarded Copper</atitle><jtitle>Proc. Roy. Soc. (London), Ser. A</jtitle><stitle>Proc. R. Soc. Lond. A</stitle><addtitle>Proc. R. Soc. Lond. A</addtitle><date>1966-01-25</date><risdate>1966</risdate><volume>289</volume><issue>1418</issue><spage>353</spage><epage>365</epage><pages>353-365</pages><issn>1364-5021</issn><issn>0080-4630</issn><eissn>1471-2946</eissn><eissn>2053-9169</eissn><abstract>Copper foils of 1000 Å thickness have been bombarded with 150 keV zinc ions, in the [011] direction, at 300 °K, and examined by quantitative electron microscopy. The damage has an attenuation length of 3000 Å. Each stopped ion creates, on average, three vacancy clusters or loops, the interstitials either reaching the foil surfaces or remaining invisible. Of the created vacancies 80 to 100 % survive. Ions create, on average, three secondary knockons in each cascade, and those of energy greater than 20 keV escape to form further cascades. The largest loops (ca. 1200 vacancies) correspond to a single cascade from a 65 keV ion. The smallest clusters (250 to 300 vacancies) correspond to the hard sphere radius at which further knockons are too large to escape from the cascade. These clusters are well above the visibility limit. Clusters and loops are formed at their final size, and there is no general growth during subsequent irradiation. The cluster configuration is relevant to irradiation creep and irradiation hardening; the lattice strain at the edge of a cluster is ca. 5 %, within a cluster only one lattice site in four is vacant, and each vacancy is bound to the cluster with an energy of ca. 0·15 eV. This is the minimum energy configuration for up to 600 vacancies. A cluster is not a void (it does not possess a free surface) nor is it a tetrahedron of stacking faults. Experiment and theory agree that these require higher energies. Clusters of between 600 and 900 vacancies collapse to sessile loops, thereby lowering the strain energy in the surrounding lattice. Larger clusters collapse to prismatic loops. This collapse does not require the nucleation of a Shockley partial dislocation.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rspa.1966.0016</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proc. Roy. Soc. (London), Ser. A, 1966-01, Vol.289 (1418), p.353-365
issn 1364-5021
0080-4630
1471-2946
2053-9169
language eng
recordid cdi_royalsociety_journals_10_1098_rspa_1966_0016
source Jstor Complete Legacy; JSTOR Mathematics & Statistics
subjects Binding energy
CONFIGURATION
COPPER
DEFECTS
DISLOCATIONS
DISTRIBUTION
ELECTRON MICROSCOPY
FOILS
Histograms
IONS
Irradiation
MEASURED VALUES
METALS, CERAMICS, AND OTHER MATERIALS
Microdensitometers
Neutrons
Radiation Effects
Temperature dependence
Tetrahedrons
THICKNESS
VACANCIES
Wave diffraction
ZINC
title Vacancy Clusters and Loops in Ion Bombarded Copper
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A54%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vacancy%20Clusters%20and%20Loops%20in%20Ion%20Bombarded%20Copper&rft.jtitle=Proc.%20Roy.%20Soc.%20(London),%20Ser.%20A&rft.au=Hesketh,%20R.%20V.&rft.aucorp=Berkeley%20Nuclear%20Labs.,%20Eng&rft.date=1966-01-25&rft.volume=289&rft.issue=1418&rft.spage=353&rft.epage=365&rft.pages=353-365&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.1966.0016&rft_dat=%3Cjstor_osti_%3E2415126%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2415126&rfr_iscdi=true