Commutative ordinary differential operators. II.—The identity Pn = Qm
In a paper previously communicated to the Society we developed the general theory of ordinary differential operators P, Q of interprime orders m, n, which satisfy the commutative identity PQ = QP. Such a pair of operators also satisfy a second identity f(P, Q) ≡ Pn — Qm + ... = 0, where, if we repla...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character Containing papers of a mathematical and physical character, 1931-12, Vol.134 (824), p.471-485 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 485 |
---|---|
container_issue | 824 |
container_start_page | 471 |
container_title | Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character |
container_volume | 134 |
creator | Burchnall, J. L. Chaundy, T. W. |
description | In a paper previously communicated to the Society we developed the general theory of ordinary differential operators P, Q of interprime orders m, n, which satisfy the commutative identity PQ = QP. Such a pair of operators also satisfy a second identity f(P, Q) ≡ Pn — Qm + ... = 0, where, if we replace P, Q by two-way co-ordinates p, q, the equation f(p, q) = 0 defines a curve which is integral though not necessarily rational. The expression of P, Q depends upon parameters defined by equations of Abelian form involving transcendents of genus equal to that of the curve, which, if finite double points are absent, is g = ½ (m — 1) (n — 1). If the curve possesses finite double points, operators satisfying f (P, Q) = 0 can still be constructed by the method of C. O. 2, section IV, but the genus of the transcendents appearing will be less than ½ (m — 1) (n — 1). This number, however, in virtue of its position in the theory of lattice integers, is still of considerable importance. |
doi_str_mv | 10.1098/rspa.1931.0208 |
format | Article |
fullrecord | <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rspa_1931_0208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>95854</jstor_id><sourcerecordid>95854</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2738-2a67e1d08e48b88224348abf42c46a697bed0098250de443b35586f7c1c38df93</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuWxZcEqP5AwfiXOgkVVoFQCUd7sRm7jCJe2KXZaUVZ8BF_Il-BQhISQWI1Gx3eufAjZo5BQyNWB8zOd0JzTBBioNdJiIHmcUwnrpAW5hJgyyDbJlvcjAClpqlqk26kmk3mta7swUeUKO9VuGRW2LI0z09rqcVTNjNN15XwS9XrJx9v7zaOJbNHQehn1p9FhdDnZIRulHnuz-z23ye3J8U3nND676PY67bPYsoyrmOk0M7QAZYQaKMWY4ELpQSnYUKQ6zbOBKSB8hkkojBB8wKVUaZkN6ZCrosz5NuGru65ahp5qaE29xFE1d9OwIgVsXGDjAhsX2LgIqef_UlfX_TbNQS4oF1YxgSFCIeMpAL7a2de1hmPgaL2fG2xe_S7527m_6hz5IA9nzk6CWsylkiLAeAWtr83LD9TuCdOMZxLvlMA-Oxf37P4IH_gnpu6PKw</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Commutative ordinary differential operators. II.—The identity Pn = Qm</title><source>JSTOR Mathematics & Statistics</source><source>Alma/SFX Local Collection</source><creator>Burchnall, J. L. ; Chaundy, T. W.</creator><creatorcontrib>Burchnall, J. L. ; Chaundy, T. W.</creatorcontrib><description>In a paper previously communicated to the Society we developed the general theory of ordinary differential operators P, Q of interprime orders m, n, which satisfy the commutative identity PQ = QP. Such a pair of operators also satisfy a second identity f(P, Q) ≡ Pn — Qm + ... = 0, where, if we replace P, Q by two-way co-ordinates p, q, the equation f(p, q) = 0 defines a curve which is integral though not necessarily rational. The expression of P, Q depends upon parameters defined by equations of Abelian form involving transcendents of genus equal to that of the curve, which, if finite double points are absent, is g = ½ (m — 1) (n — 1). If the curve possesses finite double points, operators satisfying f (P, Q) = 0 can still be constructed by the method of C. O. 2, section IV, but the genus of the transcendents appearing will be less than ½ (m — 1) (n — 1). This number, however, in virtue of its position in the theory of lattice integers, is still of considerable importance.</description><identifier>ISSN: 0950-1207</identifier><identifier>EISSN: 2053-9150</identifier><identifier>DOI: 10.1098/rspa.1931.0208</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Adjoints ; Algebra ; Constant coefficients ; Dams ; Degrees of polynomials ; Differential operators ; Integers ; Polynomials ; Roots of functions ; Transference</subject><ispartof>Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character, 1931-12, Vol.134 (824), p.471-485</ispartof><rights>Scanned images copyright © 2017, Royal Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/95854$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/95854$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,833,27929,27930,58026,58259</link.rule.ids></links><search><creatorcontrib>Burchnall, J. L.</creatorcontrib><creatorcontrib>Chaundy, T. W.</creatorcontrib><title>Commutative ordinary differential operators. II.—The identity Pn = Qm</title><title>Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character</title><addtitle>Proc. R. Soc. Lond. A</addtitle><addtitle>Proc. R. Soc. Lond. A</addtitle><description>In a paper previously communicated to the Society we developed the general theory of ordinary differential operators P, Q of interprime orders m, n, which satisfy the commutative identity PQ = QP. Such a pair of operators also satisfy a second identity f(P, Q) ≡ Pn — Qm + ... = 0, where, if we replace P, Q by two-way co-ordinates p, q, the equation f(p, q) = 0 defines a curve which is integral though not necessarily rational. The expression of P, Q depends upon parameters defined by equations of Abelian form involving transcendents of genus equal to that of the curve, which, if finite double points are absent, is g = ½ (m — 1) (n — 1). If the curve possesses finite double points, operators satisfying f (P, Q) = 0 can still be constructed by the method of C. O. 2, section IV, but the genus of the transcendents appearing will be less than ½ (m — 1) (n — 1). This number, however, in virtue of its position in the theory of lattice integers, is still of considerable importance.</description><subject>Adjoints</subject><subject>Algebra</subject><subject>Constant coefficients</subject><subject>Dams</subject><subject>Degrees of polynomials</subject><subject>Differential operators</subject><subject>Integers</subject><subject>Polynomials</subject><subject>Roots of functions</subject><subject>Transference</subject><issn>0950-1207</issn><issn>2053-9150</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1931</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuWxZcEqP5AwfiXOgkVVoFQCUd7sRm7jCJe2KXZaUVZ8BF_Il-BQhISQWI1Gx3eufAjZo5BQyNWB8zOd0JzTBBioNdJiIHmcUwnrpAW5hJgyyDbJlvcjAClpqlqk26kmk3mta7swUeUKO9VuGRW2LI0z09rqcVTNjNN15XwS9XrJx9v7zaOJbNHQehn1p9FhdDnZIRulHnuz-z23ye3J8U3nND676PY67bPYsoyrmOk0M7QAZYQaKMWY4ELpQSnYUKQ6zbOBKSB8hkkojBB8wKVUaZkN6ZCrosz5NuGru65ahp5qaE29xFE1d9OwIgVsXGDjAhsX2LgIqef_UlfX_TbNQS4oF1YxgSFCIeMpAL7a2de1hmPgaL2fG2xe_S7527m_6hz5IA9nzk6CWsylkiLAeAWtr83LD9TuCdOMZxLvlMA-Oxf37P4IH_gnpu6PKw</recordid><startdate>19311202</startdate><enddate>19311202</enddate><creator>Burchnall, J. L.</creator><creator>Chaundy, T. W.</creator><general>The Royal Society</general><scope>BSCLL</scope></search><sort><creationdate>19311202</creationdate><title>Commutative ordinary differential operators. II.—The identity Pn = Qm</title><author>Burchnall, J. L. ; Chaundy, T. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2738-2a67e1d08e48b88224348abf42c46a697bed0098250de443b35586f7c1c38df93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1931</creationdate><topic>Adjoints</topic><topic>Algebra</topic><topic>Constant coefficients</topic><topic>Dams</topic><topic>Degrees of polynomials</topic><topic>Differential operators</topic><topic>Integers</topic><topic>Polynomials</topic><topic>Roots of functions</topic><topic>Transference</topic><toplevel>online_resources</toplevel><creatorcontrib>Burchnall, J. L.</creatorcontrib><creatorcontrib>Chaundy, T. W.</creatorcontrib><collection>Istex</collection><jtitle>Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burchnall, J. L.</au><au>Chaundy, T. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Commutative ordinary differential operators. II.—The identity Pn = Qm</atitle><jtitle>Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character</jtitle><stitle>Proc. R. Soc. Lond. A</stitle><addtitle>Proc. R. Soc. Lond. A</addtitle><date>1931-12-02</date><risdate>1931</risdate><volume>134</volume><issue>824</issue><spage>471</spage><epage>485</epage><pages>471-485</pages><issn>0950-1207</issn><eissn>2053-9150</eissn><abstract>In a paper previously communicated to the Society we developed the general theory of ordinary differential operators P, Q of interprime orders m, n, which satisfy the commutative identity PQ = QP. Such a pair of operators also satisfy a second identity f(P, Q) ≡ Pn — Qm + ... = 0, where, if we replace P, Q by two-way co-ordinates p, q, the equation f(p, q) = 0 defines a curve which is integral though not necessarily rational. The expression of P, Q depends upon parameters defined by equations of Abelian form involving transcendents of genus equal to that of the curve, which, if finite double points are absent, is g = ½ (m — 1) (n — 1). If the curve possesses finite double points, operators satisfying f (P, Q) = 0 can still be constructed by the method of C. O. 2, section IV, but the genus of the transcendents appearing will be less than ½ (m — 1) (n — 1). This number, however, in virtue of its position in the theory of lattice integers, is still of considerable importance.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rspa.1931.0208</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-1207 |
ispartof | Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character, 1931-12, Vol.134 (824), p.471-485 |
issn | 0950-1207 2053-9150 |
language | eng |
recordid | cdi_royalsociety_journals_10_1098_rspa_1931_0208 |
source | JSTOR Mathematics & Statistics; Alma/SFX Local Collection |
subjects | Adjoints Algebra Constant coefficients Dams Degrees of polynomials Differential operators Integers Polynomials Roots of functions Transference |
title | Commutative ordinary differential operators. II.—The identity Pn = Qm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T16%3A32%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Commutative%20ordinary%20differential%20operators.%20II.%E2%80%94The%20identity%20Pn%20=%20Qm&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20London.%20Series%20A,%20Containing%20papers%20of%20a%20mathematical%20and%20physical%20character&rft.au=Burchnall,%20J.%20L.&rft.date=1931-12-02&rft.volume=134&rft.issue=824&rft.spage=471&rft.epage=485&rft.pages=471-485&rft.issn=0950-1207&rft.eissn=2053-9150&rft_id=info:doi/10.1098/rspa.1931.0208&rft_dat=%3Cjstor_royal%3E95854%3C/jstor_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=95854&rfr_iscdi=true |