Quantification and optimization of ADF-STEM image contrast for beam-sensitive materials
Many functional materials are difficult to analyse by scanning transmission electron microscopy (STEM) on account of their beam sensitivity and low contrast between different phases. The problem becomes even more severe when thick specimens need to be investigated, a situation that is common for mat...
Gespeichert in:
Veröffentlicht in: | Royal Society open science 2018-05, Vol.5 (5), p.171838-171838 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 171838 |
---|---|
container_issue | 5 |
container_start_page | 171838 |
container_title | Royal Society open science |
container_volume | 5 |
creator | Gnanasekaran, Karthikeyan de With, Gijsbertus Friedrich, Heiner |
description | Many functional materials are difficult to analyse by scanning transmission electron microscopy (STEM) on account of their beam sensitivity and low contrast between different phases. The problem becomes even more severe when thick specimens need to be investigated, a situation that is common for materials that are ordered from the nanometre to micrometre length scales or when performing dynamic experiments in a TEM liquid cell. Here we report a method to optimize annular dark-field (ADF) STEM imaging conditions and detector geometries for a thick and beam-sensitive low-contrast specimen using the example of a carbon nanotube/polymer nanocomposite. We carried out Monte Carlo simulations as well as quantitative ADF-STEM imaging experiments to predict and verify optimum contrast conditions. The presented method is general, can be easily adapted to other beam-sensitive and/or low-contrast materials, as shown for a polymer vesicle within a TEM liquid cell, and can act as an expert guide on whether an experiment is feasible and to determine the best imaging conditions. |
doi_str_mv | 10.1098/rsos.171838 |
format | Article |
fullrecord | <record><control><sourceid>proquest_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rsos_171838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_02a0519af4904c28bb8623fc07b4f783</doaj_id><sourcerecordid>2054934528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-a38876639a5b423a539dfe57cda1bc3cca1e1b40334e23120df1b48eae13d7c23</originalsourceid><addsrcrecordid>eNptkctrFTEUxoMottSu3MssBZmax-ROshFK31ARseIynMmcXHOZmVyTTOH615vr1NKCq_P6-OXkfIS8ZfSEUa0-xhTSCWuZEuoFOeRUNrVsqXj5JD8gxyltKKVMUtGu2tfkgGuleckPyY-vM0zZO28h-zBVMPVV2GY_-t9LI7jq9Pyy_nZ38bnyI6yxsmHKEVKuXIhVhzDWCafks7_HaoSM0cOQ3pBXrgQ8fohH5Pvlxd3ZdX375erm7PS2tlI2uQahVLtaCQ2ya7gAKXTvULa2B9ZZYS0wZF1DhWiQC8Zp70qpEJCJvrVcHJGbhdsH2JhtLCvGnQngzd9GiGsDMXs7oKEcqGQaXKNpY7nqOrXiwlnado1rlSisTwtrO3cj9hb3_xyeQZ9PJv_TrMO9kVpTxWkBvH8AxPBrxpTN6JPFYYAJw5zM3hItGslVkX5YpDaGlCK6x2cYNXtnzd5Zszhb1O-ebvao_edjEdBFEMOunDtYj3lnNmGOUyn_y_wDu2iwrw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2054934528</pqid></control><display><type>article</type><title>Quantification and optimization of ADF-STEM image contrast for beam-sensitive materials</title><source>DOAJ Directory of Open Access Journals</source><source>Royal Society Open Access Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Gnanasekaran, Karthikeyan ; de With, Gijsbertus ; Friedrich, Heiner</creator><creatorcontrib>Gnanasekaran, Karthikeyan ; de With, Gijsbertus ; Friedrich, Heiner</creatorcontrib><description>Many functional materials are difficult to analyse by scanning transmission electron microscopy (STEM) on account of their beam sensitivity and low contrast between different phases. The problem becomes even more severe when thick specimens need to be investigated, a situation that is common for materials that are ordered from the nanometre to micrometre length scales or when performing dynamic experiments in a TEM liquid cell. Here we report a method to optimize annular dark-field (ADF) STEM imaging conditions and detector geometries for a thick and beam-sensitive low-contrast specimen using the example of a carbon nanotube/polymer nanocomposite. We carried out Monte Carlo simulations as well as quantitative ADF-STEM imaging experiments to predict and verify optimum contrast conditions. The presented method is general, can be easily adapted to other beam-sensitive and/or low-contrast materials, as shown for a polymer vesicle within a TEM liquid cell, and can act as an expert guide on whether an experiment is feasible and to determine the best imaging conditions.</description><identifier>ISSN: 2054-5703</identifier><identifier>EISSN: 2054-5703</identifier><identifier>DOI: 10.1098/rsos.171838</identifier><identifier>PMID: 29892376</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Beam-Sensitive Materials ; Chemistry ; Electron Dose ; Image Contrast ; Low-Contrast Materials ; Monte Carlo Simulations ; Scanning Transmission Electron Microscopy</subject><ispartof>Royal Society open science, 2018-05, Vol.5 (5), p.171838-171838</ispartof><rights>2018 The Authors.</rights><rights>2018 The Authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-a38876639a5b423a539dfe57cda1bc3cca1e1b40334e23120df1b48eae13d7c23</citedby><cites>FETCH-LOGICAL-c554t-a38876639a5b423a539dfe57cda1bc3cca1e1b40334e23120df1b48eae13d7c23</cites><orcidid>0000-0002-7163-8429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5990820/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5990820/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,3323,27152,27929,27930,53796,53798,55560,55570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29892376$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gnanasekaran, Karthikeyan</creatorcontrib><creatorcontrib>de With, Gijsbertus</creatorcontrib><creatorcontrib>Friedrich, Heiner</creatorcontrib><title>Quantification and optimization of ADF-STEM image contrast for beam-sensitive materials</title><title>Royal Society open science</title><addtitle>R. Soc. open sci</addtitle><addtitle>R Soc Open Sci</addtitle><description>Many functional materials are difficult to analyse by scanning transmission electron microscopy (STEM) on account of their beam sensitivity and low contrast between different phases. The problem becomes even more severe when thick specimens need to be investigated, a situation that is common for materials that are ordered from the nanometre to micrometre length scales or when performing dynamic experiments in a TEM liquid cell. Here we report a method to optimize annular dark-field (ADF) STEM imaging conditions and detector geometries for a thick and beam-sensitive low-contrast specimen using the example of a carbon nanotube/polymer nanocomposite. We carried out Monte Carlo simulations as well as quantitative ADF-STEM imaging experiments to predict and verify optimum contrast conditions. The presented method is general, can be easily adapted to other beam-sensitive and/or low-contrast materials, as shown for a polymer vesicle within a TEM liquid cell, and can act as an expert guide on whether an experiment is feasible and to determine the best imaging conditions.</description><subject>Beam-Sensitive Materials</subject><subject>Chemistry</subject><subject>Electron Dose</subject><subject>Image Contrast</subject><subject>Low-Contrast Materials</subject><subject>Monte Carlo Simulations</subject><subject>Scanning Transmission Electron Microscopy</subject><issn>2054-5703</issn><issn>2054-5703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkctrFTEUxoMottSu3MssBZmax-ROshFK31ARseIynMmcXHOZmVyTTOH615vr1NKCq_P6-OXkfIS8ZfSEUa0-xhTSCWuZEuoFOeRUNrVsqXj5JD8gxyltKKVMUtGu2tfkgGuleckPyY-vM0zZO28h-zBVMPVV2GY_-t9LI7jq9Pyy_nZ38bnyI6yxsmHKEVKuXIhVhzDWCafks7_HaoSM0cOQ3pBXrgQ8fohH5Pvlxd3ZdX375erm7PS2tlI2uQahVLtaCQ2ya7gAKXTvULa2B9ZZYS0wZF1DhWiQC8Zp70qpEJCJvrVcHJGbhdsH2JhtLCvGnQngzd9GiGsDMXs7oKEcqGQaXKNpY7nqOrXiwlnado1rlSisTwtrO3cj9hb3_xyeQZ9PJv_TrMO9kVpTxWkBvH8AxPBrxpTN6JPFYYAJw5zM3hItGslVkX5YpDaGlCK6x2cYNXtnzd5Zszhb1O-ebvao_edjEdBFEMOunDtYj3lnNmGOUyn_y_wDu2iwrw</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Gnanasekaran, Karthikeyan</creator><creator>de With, Gijsbertus</creator><creator>Friedrich, Heiner</creator><general>The Royal Society Publishing</general><general>The Royal Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7163-8429</orcidid></search><sort><creationdate>20180501</creationdate><title>Quantification and optimization of ADF-STEM image contrast for beam-sensitive materials</title><author>Gnanasekaran, Karthikeyan ; de With, Gijsbertus ; Friedrich, Heiner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-a38876639a5b423a539dfe57cda1bc3cca1e1b40334e23120df1b48eae13d7c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Beam-Sensitive Materials</topic><topic>Chemistry</topic><topic>Electron Dose</topic><topic>Image Contrast</topic><topic>Low-Contrast Materials</topic><topic>Monte Carlo Simulations</topic><topic>Scanning Transmission Electron Microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gnanasekaran, Karthikeyan</creatorcontrib><creatorcontrib>de With, Gijsbertus</creatorcontrib><creatorcontrib>Friedrich, Heiner</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Royal Society open science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gnanasekaran, Karthikeyan</au><au>de With, Gijsbertus</au><au>Friedrich, Heiner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantification and optimization of ADF-STEM image contrast for beam-sensitive materials</atitle><jtitle>Royal Society open science</jtitle><stitle>R. Soc. open sci</stitle><addtitle>R Soc Open Sci</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>5</volume><issue>5</issue><spage>171838</spage><epage>171838</epage><pages>171838-171838</pages><issn>2054-5703</issn><eissn>2054-5703</eissn><abstract>Many functional materials are difficult to analyse by scanning transmission electron microscopy (STEM) on account of their beam sensitivity and low contrast between different phases. The problem becomes even more severe when thick specimens need to be investigated, a situation that is common for materials that are ordered from the nanometre to micrometre length scales or when performing dynamic experiments in a TEM liquid cell. Here we report a method to optimize annular dark-field (ADF) STEM imaging conditions and detector geometries for a thick and beam-sensitive low-contrast specimen using the example of a carbon nanotube/polymer nanocomposite. We carried out Monte Carlo simulations as well as quantitative ADF-STEM imaging experiments to predict and verify optimum contrast conditions. The presented method is general, can be easily adapted to other beam-sensitive and/or low-contrast materials, as shown for a polymer vesicle within a TEM liquid cell, and can act as an expert guide on whether an experiment is feasible and to determine the best imaging conditions.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>29892376</pmid><doi>10.1098/rsos.171838</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7163-8429</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2054-5703 |
ispartof | Royal Society open science, 2018-05, Vol.5 (5), p.171838-171838 |
issn | 2054-5703 2054-5703 |
language | eng |
recordid | cdi_royalsociety_journals_10_1098_rsos_171838 |
source | DOAJ Directory of Open Access Journals; Royal Society Open Access Journals; PubMed Central Open Access; PubMed Central; EZB Electronic Journals Library |
subjects | Beam-Sensitive Materials Chemistry Electron Dose Image Contrast Low-Contrast Materials Monte Carlo Simulations Scanning Transmission Electron Microscopy |
title | Quantification and optimization of ADF-STEM image contrast for beam-sensitive materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T16%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantification%20and%20optimization%20of%20ADF-STEM%20image%20contrast%20for%20beam-sensitive%20materials&rft.jtitle=Royal%20Society%20open%20science&rft.au=Gnanasekaran,%20Karthikeyan&rft.date=2018-05-01&rft.volume=5&rft.issue=5&rft.spage=171838&rft.epage=171838&rft.pages=171838-171838&rft.issn=2054-5703&rft.eissn=2054-5703&rft_id=info:doi/10.1098/rsos.171838&rft_dat=%3Cproquest_royal%3E2054934528%3C/proquest_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2054934528&rft_id=info:pmid/29892376&rft_doaj_id=oai_doaj_org_article_02a0519af4904c28bb8623fc07b4f783&rfr_iscdi=true |