Quantification and optimization of ADF-STEM image contrast for beam-sensitive materials

Many functional materials are difficult to analyse by scanning transmission electron microscopy (STEM) on account of their beam sensitivity and low contrast between different phases. The problem becomes even more severe when thick specimens need to be investigated, a situation that is common for mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Royal Society open science 2018-05, Vol.5 (5), p.171838-171838
Hauptverfasser: Gnanasekaran, Karthikeyan, de With, Gijsbertus, Friedrich, Heiner
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 171838
container_issue 5
container_start_page 171838
container_title Royal Society open science
container_volume 5
creator Gnanasekaran, Karthikeyan
de With, Gijsbertus
Friedrich, Heiner
description Many functional materials are difficult to analyse by scanning transmission electron microscopy (STEM) on account of their beam sensitivity and low contrast between different phases. The problem becomes even more severe when thick specimens need to be investigated, a situation that is common for materials that are ordered from the nanometre to micrometre length scales or when performing dynamic experiments in a TEM liquid cell. Here we report a method to optimize annular dark-field (ADF) STEM imaging conditions and detector geometries for a thick and beam-sensitive low-contrast specimen using the example of a carbon nanotube/polymer nanocomposite. We carried out Monte Carlo simulations as well as quantitative ADF-STEM imaging experiments to predict and verify optimum contrast conditions. The presented method is general, can be easily adapted to other beam-sensitive and/or low-contrast materials, as shown for a polymer vesicle within a TEM liquid cell, and can act as an expert guide on whether an experiment is feasible and to determine the best imaging conditions.
doi_str_mv 10.1098/rsos.171838
format Article
fullrecord <record><control><sourceid>proquest_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rsos_171838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_02a0519af4904c28bb8623fc07b4f783</doaj_id><sourcerecordid>2054934528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-a38876639a5b423a539dfe57cda1bc3cca1e1b40334e23120df1b48eae13d7c23</originalsourceid><addsrcrecordid>eNptkctrFTEUxoMottSu3MssBZmax-ROshFK31ARseIynMmcXHOZmVyTTOH615vr1NKCq_P6-OXkfIS8ZfSEUa0-xhTSCWuZEuoFOeRUNrVsqXj5JD8gxyltKKVMUtGu2tfkgGuleckPyY-vM0zZO28h-zBVMPVV2GY_-t9LI7jq9Pyy_nZ38bnyI6yxsmHKEVKuXIhVhzDWCafks7_HaoSM0cOQ3pBXrgQ8fohH5Pvlxd3ZdX375erm7PS2tlI2uQahVLtaCQ2ya7gAKXTvULa2B9ZZYS0wZF1DhWiQC8Zp70qpEJCJvrVcHJGbhdsH2JhtLCvGnQngzd9GiGsDMXs7oKEcqGQaXKNpY7nqOrXiwlnado1rlSisTwtrO3cj9hb3_xyeQZ9PJv_TrMO9kVpTxWkBvH8AxPBrxpTN6JPFYYAJw5zM3hItGslVkX5YpDaGlCK6x2cYNXtnzd5Zszhb1O-ebvao_edjEdBFEMOunDtYj3lnNmGOUyn_y_wDu2iwrw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2054934528</pqid></control><display><type>article</type><title>Quantification and optimization of ADF-STEM image contrast for beam-sensitive materials</title><source>DOAJ Directory of Open Access Journals</source><source>Royal Society Open Access Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Gnanasekaran, Karthikeyan ; de With, Gijsbertus ; Friedrich, Heiner</creator><creatorcontrib>Gnanasekaran, Karthikeyan ; de With, Gijsbertus ; Friedrich, Heiner</creatorcontrib><description>Many functional materials are difficult to analyse by scanning transmission electron microscopy (STEM) on account of their beam sensitivity and low contrast between different phases. The problem becomes even more severe when thick specimens need to be investigated, a situation that is common for materials that are ordered from the nanometre to micrometre length scales or when performing dynamic experiments in a TEM liquid cell. Here we report a method to optimize annular dark-field (ADF) STEM imaging conditions and detector geometries for a thick and beam-sensitive low-contrast specimen using the example of a carbon nanotube/polymer nanocomposite. We carried out Monte Carlo simulations as well as quantitative ADF-STEM imaging experiments to predict and verify optimum contrast conditions. The presented method is general, can be easily adapted to other beam-sensitive and/or low-contrast materials, as shown for a polymer vesicle within a TEM liquid cell, and can act as an expert guide on whether an experiment is feasible and to determine the best imaging conditions.</description><identifier>ISSN: 2054-5703</identifier><identifier>EISSN: 2054-5703</identifier><identifier>DOI: 10.1098/rsos.171838</identifier><identifier>PMID: 29892376</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Beam-Sensitive Materials ; Chemistry ; Electron Dose ; Image Contrast ; Low-Contrast Materials ; Monte Carlo Simulations ; Scanning Transmission Electron Microscopy</subject><ispartof>Royal Society open science, 2018-05, Vol.5 (5), p.171838-171838</ispartof><rights>2018 The Authors.</rights><rights>2018 The Authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-a38876639a5b423a539dfe57cda1bc3cca1e1b40334e23120df1b48eae13d7c23</citedby><cites>FETCH-LOGICAL-c554t-a38876639a5b423a539dfe57cda1bc3cca1e1b40334e23120df1b48eae13d7c23</cites><orcidid>0000-0002-7163-8429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5990820/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5990820/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,3323,27152,27929,27930,53796,53798,55560,55570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29892376$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gnanasekaran, Karthikeyan</creatorcontrib><creatorcontrib>de With, Gijsbertus</creatorcontrib><creatorcontrib>Friedrich, Heiner</creatorcontrib><title>Quantification and optimization of ADF-STEM image contrast for beam-sensitive materials</title><title>Royal Society open science</title><addtitle>R. Soc. open sci</addtitle><addtitle>R Soc Open Sci</addtitle><description>Many functional materials are difficult to analyse by scanning transmission electron microscopy (STEM) on account of their beam sensitivity and low contrast between different phases. The problem becomes even more severe when thick specimens need to be investigated, a situation that is common for materials that are ordered from the nanometre to micrometre length scales or when performing dynamic experiments in a TEM liquid cell. Here we report a method to optimize annular dark-field (ADF) STEM imaging conditions and detector geometries for a thick and beam-sensitive low-contrast specimen using the example of a carbon nanotube/polymer nanocomposite. We carried out Monte Carlo simulations as well as quantitative ADF-STEM imaging experiments to predict and verify optimum contrast conditions. The presented method is general, can be easily adapted to other beam-sensitive and/or low-contrast materials, as shown for a polymer vesicle within a TEM liquid cell, and can act as an expert guide on whether an experiment is feasible and to determine the best imaging conditions.</description><subject>Beam-Sensitive Materials</subject><subject>Chemistry</subject><subject>Electron Dose</subject><subject>Image Contrast</subject><subject>Low-Contrast Materials</subject><subject>Monte Carlo Simulations</subject><subject>Scanning Transmission Electron Microscopy</subject><issn>2054-5703</issn><issn>2054-5703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkctrFTEUxoMottSu3MssBZmax-ROshFK31ARseIynMmcXHOZmVyTTOH615vr1NKCq_P6-OXkfIS8ZfSEUa0-xhTSCWuZEuoFOeRUNrVsqXj5JD8gxyltKKVMUtGu2tfkgGuleckPyY-vM0zZO28h-zBVMPVV2GY_-t9LI7jq9Pyy_nZ38bnyI6yxsmHKEVKuXIhVhzDWCafks7_HaoSM0cOQ3pBXrgQ8fohH5Pvlxd3ZdX375erm7PS2tlI2uQahVLtaCQ2ya7gAKXTvULa2B9ZZYS0wZF1DhWiQC8Zp70qpEJCJvrVcHJGbhdsH2JhtLCvGnQngzd9GiGsDMXs7oKEcqGQaXKNpY7nqOrXiwlnado1rlSisTwtrO3cj9hb3_xyeQZ9PJv_TrMO9kVpTxWkBvH8AxPBrxpTN6JPFYYAJw5zM3hItGslVkX5YpDaGlCK6x2cYNXtnzd5Zszhb1O-ebvao_edjEdBFEMOunDtYj3lnNmGOUyn_y_wDu2iwrw</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Gnanasekaran, Karthikeyan</creator><creator>de With, Gijsbertus</creator><creator>Friedrich, Heiner</creator><general>The Royal Society Publishing</general><general>The Royal Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7163-8429</orcidid></search><sort><creationdate>20180501</creationdate><title>Quantification and optimization of ADF-STEM image contrast for beam-sensitive materials</title><author>Gnanasekaran, Karthikeyan ; de With, Gijsbertus ; Friedrich, Heiner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-a38876639a5b423a539dfe57cda1bc3cca1e1b40334e23120df1b48eae13d7c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Beam-Sensitive Materials</topic><topic>Chemistry</topic><topic>Electron Dose</topic><topic>Image Contrast</topic><topic>Low-Contrast Materials</topic><topic>Monte Carlo Simulations</topic><topic>Scanning Transmission Electron Microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gnanasekaran, Karthikeyan</creatorcontrib><creatorcontrib>de With, Gijsbertus</creatorcontrib><creatorcontrib>Friedrich, Heiner</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Royal Society open science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gnanasekaran, Karthikeyan</au><au>de With, Gijsbertus</au><au>Friedrich, Heiner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantification and optimization of ADF-STEM image contrast for beam-sensitive materials</atitle><jtitle>Royal Society open science</jtitle><stitle>R. Soc. open sci</stitle><addtitle>R Soc Open Sci</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>5</volume><issue>5</issue><spage>171838</spage><epage>171838</epage><pages>171838-171838</pages><issn>2054-5703</issn><eissn>2054-5703</eissn><abstract>Many functional materials are difficult to analyse by scanning transmission electron microscopy (STEM) on account of their beam sensitivity and low contrast between different phases. The problem becomes even more severe when thick specimens need to be investigated, a situation that is common for materials that are ordered from the nanometre to micrometre length scales or when performing dynamic experiments in a TEM liquid cell. Here we report a method to optimize annular dark-field (ADF) STEM imaging conditions and detector geometries for a thick and beam-sensitive low-contrast specimen using the example of a carbon nanotube/polymer nanocomposite. We carried out Monte Carlo simulations as well as quantitative ADF-STEM imaging experiments to predict and verify optimum contrast conditions. The presented method is general, can be easily adapted to other beam-sensitive and/or low-contrast materials, as shown for a polymer vesicle within a TEM liquid cell, and can act as an expert guide on whether an experiment is feasible and to determine the best imaging conditions.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>29892376</pmid><doi>10.1098/rsos.171838</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7163-8429</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2054-5703
ispartof Royal Society open science, 2018-05, Vol.5 (5), p.171838-171838
issn 2054-5703
2054-5703
language eng
recordid cdi_royalsociety_journals_10_1098_rsos_171838
source DOAJ Directory of Open Access Journals; Royal Society Open Access Journals; PubMed Central Open Access; PubMed Central; EZB Electronic Journals Library
subjects Beam-Sensitive Materials
Chemistry
Electron Dose
Image Contrast
Low-Contrast Materials
Monte Carlo Simulations
Scanning Transmission Electron Microscopy
title Quantification and optimization of ADF-STEM image contrast for beam-sensitive materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T16%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantification%20and%20optimization%20of%20ADF-STEM%20image%20contrast%20for%20beam-sensitive%20materials&rft.jtitle=Royal%20Society%20open%20science&rft.au=Gnanasekaran,%20Karthikeyan&rft.date=2018-05-01&rft.volume=5&rft.issue=5&rft.spage=171838&rft.epage=171838&rft.pages=171838-171838&rft.issn=2054-5703&rft.eissn=2054-5703&rft_id=info:doi/10.1098/rsos.171838&rft_dat=%3Cproquest_royal%3E2054934528%3C/proquest_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2054934528&rft_id=info:pmid/29892376&rft_doaj_id=oai_doaj_org_article_02a0519af4904c28bb8623fc07b4f783&rfr_iscdi=true