Waterjet and laser etching: the nonlinear inverse problem

In waterjet and laser milling, material is removed from a solid surface in a succession of layers to create a new shape, in a depth-controlled manner. The inverse problem consists of defining the control parameters, in particular, the two-dimensional beam path, to arrive at a prescribed freeform sur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Royal Society open science 2017-07, Vol.4 (7), p.161031-161031
Hauptverfasser: Bilbao-Guillerna, A., Axinte, D. A., Billingham, J., Cadot, G. B. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 161031
container_issue 7
container_start_page 161031
container_title Royal Society open science
container_volume 4
creator Bilbao-Guillerna, A.
Axinte, D. A.
Billingham, J.
Cadot, G. B. J.
description In waterjet and laser milling, material is removed from a solid surface in a succession of layers to create a new shape, in a depth-controlled manner. The inverse problem consists of defining the control parameters, in particular, the two-dimensional beam path, to arrive at a prescribed freeform surface. Waterjet milling (WJM) and pulsed laser ablation (PLA) are studied in this paper, since a generic nonlinear material removal model is appropriate for both of these processes. The inverse problem is usually solved for this kind of process by simply controlling dwell time in proportion to the required depth of milling at a sequence of pixels on the surface. However, this approach is only valid when shallow surfaces are etched, since it does not take into account either the footprint of the beam or its overlapping on successive passes. A discrete adjoint algorithm is proposed in this paper to improve the solution. Nonlinear effects and non-straight passes are included in the optimization, while the calculation of the Jacobian matrix does not require large computation times. Several tests are performed to validate the proposed method and the results show that tracking error is reduced typically by a factor of two in comparison to the pixel-by-pixel approach and the classical raster path strategy with straight passes. The tracking error can be as low as 2–5% and 1–2% for WJM and PLA, respectively, depending on the complexity of the target surface.
doi_str_mv 10.1098/rsos.161031
format Article
fullrecord <record><control><sourceid>proquest_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rsos_161031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4b7401f1c3b946af98da91e12a102ecc</doaj_id><sourcerecordid>1927601734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-3b694b78a2b5ac462c2c22b8054ae87af4803fc9034dc1f80a778eb5c39bccc83</originalsourceid><addsrcrecordid>eNp9kc9rFDEUxwdRbKk9eZc5CrL1vSQzSTwIUqoWCgWrePAQMpk3u1lmJ2sys7D-9aZOLbsHJYf8-uTzHvkWxUuECwSt3sYU0gXWCByfFKcMKrGoJPCnB-uT4jylNQBgBVzW8nlxwpTUiJydFvq7HSmuaSzt0Ja9TRRLGt3KD8t35biicghD7weysfTDjmKichtD09PmRfGss32i84f5rPj28err5efFze2n68sPNwtXSTYueFNr0UhlWVNZJ2rm8mCNyt1ZUtJ2QgHvnAYuWoedAiuloqZyXDfOOcXPiuvZ2wa7NtvoNzbuTbDe_DkIcWlsHL3ryeQ6ArBDxxstattp1VqNhMwiMHIuu97Pru3UbKh1NIzR9kfS45vBr8wy7ExVCayYzILXD4IYfk6URrPxyVHf24HClAxqJmtAyUVG38yoiyGlSN1jGQRzn525z87M2WX61WFnj-zfpDIAMxDDPn93cJ7GvVmHKQ55-w_nj_89-XJ3e7cTXhpQHEFCjWh--e2sEManNJGRh8Yj-29Xv8Vn</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927601734</pqid></control><display><type>article</type><title>Waterjet and laser etching: the nonlinear inverse problem</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Royal Society Open Access Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Bilbao-Guillerna, A. ; Axinte, D. A. ; Billingham, J. ; Cadot, G. B. J.</creator><creatorcontrib>Bilbao-Guillerna, A. ; Axinte, D. A. ; Billingham, J. ; Cadot, G. B. J.</creatorcontrib><description>In waterjet and laser milling, material is removed from a solid surface in a succession of layers to create a new shape, in a depth-controlled manner. The inverse problem consists of defining the control parameters, in particular, the two-dimensional beam path, to arrive at a prescribed freeform surface. Waterjet milling (WJM) and pulsed laser ablation (PLA) are studied in this paper, since a generic nonlinear material removal model is appropriate for both of these processes. The inverse problem is usually solved for this kind of process by simply controlling dwell time in proportion to the required depth of milling at a sequence of pixels on the surface. However, this approach is only valid when shallow surfaces are etched, since it does not take into account either the footprint of the beam or its overlapping on successive passes. A discrete adjoint algorithm is proposed in this paper to improve the solution. Nonlinear effects and non-straight passes are included in the optimization, while the calculation of the Jacobian matrix does not require large computation times. Several tests are performed to validate the proposed method and the results show that tracking error is reduced typically by a factor of two in comparison to the pixel-by-pixel approach and the classical raster path strategy with straight passes. The tracking error can be as low as 2–5% and 1–2% for WJM and PLA, respectively, depending on the complexity of the target surface.</description><identifier>ISSN: 2054-5703</identifier><identifier>EISSN: 2054-5703</identifier><identifier>DOI: 10.1098/rsos.161031</identifier><identifier>PMID: 28791132</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Adjoint Optimization ; Engineering ; Inverse Problem ; Pulsed Laser Ablation ; Waterjet Milling</subject><ispartof>Royal Society open science, 2017-07, Vol.4 (7), p.161031-161031</ispartof><rights>2017 The Authors.</rights><rights>2017 The Authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c572t-3b694b78a2b5ac462c2c22b8054ae87af4803fc9034dc1f80a778eb5c39bccc83</citedby><cites>FETCH-LOGICAL-c572t-3b694b78a2b5ac462c2c22b8054ae87af4803fc9034dc1f80a778eb5c39bccc83</cites><orcidid>0000-0002-4392-5770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5541527/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5541527/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,3322,27147,27924,27925,53791,53793,55555,55565</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28791132$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bilbao-Guillerna, A.</creatorcontrib><creatorcontrib>Axinte, D. A.</creatorcontrib><creatorcontrib>Billingham, J.</creatorcontrib><creatorcontrib>Cadot, G. B. J.</creatorcontrib><title>Waterjet and laser etching: the nonlinear inverse problem</title><title>Royal Society open science</title><addtitle>R. Soc. open sci</addtitle><addtitle>R Soc Open Sci</addtitle><description>In waterjet and laser milling, material is removed from a solid surface in a succession of layers to create a new shape, in a depth-controlled manner. The inverse problem consists of defining the control parameters, in particular, the two-dimensional beam path, to arrive at a prescribed freeform surface. Waterjet milling (WJM) and pulsed laser ablation (PLA) are studied in this paper, since a generic nonlinear material removal model is appropriate for both of these processes. The inverse problem is usually solved for this kind of process by simply controlling dwell time in proportion to the required depth of milling at a sequence of pixels on the surface. However, this approach is only valid when shallow surfaces are etched, since it does not take into account either the footprint of the beam or its overlapping on successive passes. A discrete adjoint algorithm is proposed in this paper to improve the solution. Nonlinear effects and non-straight passes are included in the optimization, while the calculation of the Jacobian matrix does not require large computation times. Several tests are performed to validate the proposed method and the results show that tracking error is reduced typically by a factor of two in comparison to the pixel-by-pixel approach and the classical raster path strategy with straight passes. The tracking error can be as low as 2–5% and 1–2% for WJM and PLA, respectively, depending on the complexity of the target surface.</description><subject>Adjoint Optimization</subject><subject>Engineering</subject><subject>Inverse Problem</subject><subject>Pulsed Laser Ablation</subject><subject>Waterjet Milling</subject><issn>2054-5703</issn><issn>2054-5703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kc9rFDEUxwdRbKk9eZc5CrL1vSQzSTwIUqoWCgWrePAQMpk3u1lmJ2sys7D-9aZOLbsHJYf8-uTzHvkWxUuECwSt3sYU0gXWCByfFKcMKrGoJPCnB-uT4jylNQBgBVzW8nlxwpTUiJydFvq7HSmuaSzt0Ja9TRRLGt3KD8t35biicghD7weysfTDjmKichtD09PmRfGss32i84f5rPj28err5efFze2n68sPNwtXSTYueFNr0UhlWVNZJ2rm8mCNyt1ZUtJ2QgHvnAYuWoedAiuloqZyXDfOOcXPiuvZ2wa7NtvoNzbuTbDe_DkIcWlsHL3ryeQ6ArBDxxstattp1VqNhMwiMHIuu97Pru3UbKh1NIzR9kfS45vBr8wy7ExVCayYzILXD4IYfk6URrPxyVHf24HClAxqJmtAyUVG38yoiyGlSN1jGQRzn525z87M2WX61WFnj-zfpDIAMxDDPn93cJ7GvVmHKQ55-w_nj_89-XJ3e7cTXhpQHEFCjWh--e2sEManNJGRh8Yj-29Xv8Vn</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Bilbao-Guillerna, A.</creator><creator>Axinte, D. A.</creator><creator>Billingham, J.</creator><creator>Cadot, G. B. J.</creator><general>The Royal Society Publishing</general><general>The Royal Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4392-5770</orcidid></search><sort><creationdate>20170701</creationdate><title>Waterjet and laser etching: the nonlinear inverse problem</title><author>Bilbao-Guillerna, A. ; Axinte, D. A. ; Billingham, J. ; Cadot, G. B. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-3b694b78a2b5ac462c2c22b8054ae87af4803fc9034dc1f80a778eb5c39bccc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adjoint Optimization</topic><topic>Engineering</topic><topic>Inverse Problem</topic><topic>Pulsed Laser Ablation</topic><topic>Waterjet Milling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bilbao-Guillerna, A.</creatorcontrib><creatorcontrib>Axinte, D. A.</creatorcontrib><creatorcontrib>Billingham, J.</creatorcontrib><creatorcontrib>Cadot, G. B. J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Royal Society open science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilbao-Guillerna, A.</au><au>Axinte, D. A.</au><au>Billingham, J.</au><au>Cadot, G. B. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Waterjet and laser etching: the nonlinear inverse problem</atitle><jtitle>Royal Society open science</jtitle><stitle>R. Soc. open sci</stitle><addtitle>R Soc Open Sci</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>4</volume><issue>7</issue><spage>161031</spage><epage>161031</epage><pages>161031-161031</pages><issn>2054-5703</issn><eissn>2054-5703</eissn><abstract>In waterjet and laser milling, material is removed from a solid surface in a succession of layers to create a new shape, in a depth-controlled manner. The inverse problem consists of defining the control parameters, in particular, the two-dimensional beam path, to arrive at a prescribed freeform surface. Waterjet milling (WJM) and pulsed laser ablation (PLA) are studied in this paper, since a generic nonlinear material removal model is appropriate for both of these processes. The inverse problem is usually solved for this kind of process by simply controlling dwell time in proportion to the required depth of milling at a sequence of pixels on the surface. However, this approach is only valid when shallow surfaces are etched, since it does not take into account either the footprint of the beam or its overlapping on successive passes. A discrete adjoint algorithm is proposed in this paper to improve the solution. Nonlinear effects and non-straight passes are included in the optimization, while the calculation of the Jacobian matrix does not require large computation times. Several tests are performed to validate the proposed method and the results show that tracking error is reduced typically by a factor of two in comparison to the pixel-by-pixel approach and the classical raster path strategy with straight passes. The tracking error can be as low as 2–5% and 1–2% for WJM and PLA, respectively, depending on the complexity of the target surface.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>28791132</pmid><doi>10.1098/rsos.161031</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4392-5770</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2054-5703
ispartof Royal Society open science, 2017-07, Vol.4 (7), p.161031-161031
issn 2054-5703
2054-5703
language eng
recordid cdi_royalsociety_journals_10_1098_rsos_161031
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Royal Society Open Access Journals; PubMed Central; PubMed Central Open Access
subjects Adjoint Optimization
Engineering
Inverse Problem
Pulsed Laser Ablation
Waterjet Milling
title Waterjet and laser etching: the nonlinear inverse problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A27%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Waterjet%20and%20laser%20etching:%20the%20nonlinear%20inverse%20problem&rft.jtitle=Royal%20Society%20open%20science&rft.au=Bilbao-Guillerna,%20A.&rft.date=2017-07-01&rft.volume=4&rft.issue=7&rft.spage=161031&rft.epage=161031&rft.pages=161031-161031&rft.issn=2054-5703&rft.eissn=2054-5703&rft_id=info:doi/10.1098/rsos.161031&rft_dat=%3Cproquest_royal%3E1927601734%3C/proquest_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927601734&rft_id=info:pmid/28791132&rft_doaj_id=oai_doaj_org_article_4b7401f1c3b946af98da91e12a102ecc&rfr_iscdi=true