Crystal structure of Caulobacter crescentus polynucleotide phosphorylase reveals a mechanism of RNA substrate channelling and RNA degradosome assembly

Polynucleotide phosphorylase (PNPase) is an exoribonuclease that cleaves single-stranded RNA substrates with 3′–5′ directionality and processive behaviour. Its ring-like, trimeric architecture creates a central channel where phosphorolytic active sites reside. One face of the ring is decorated with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Open biology 2012-04, Vol.2 (4), p.120028-120028
Hauptverfasser: Hardwick, Steven W., Gubbey, Tobias, Hug, Isabelle, Jenal, Urs, Luisi, Ben F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 120028
container_issue 4
container_start_page 120028
container_title Open biology
container_volume 2
creator Hardwick, Steven W.
Gubbey, Tobias
Hug, Isabelle
Jenal, Urs
Luisi, Ben F.
description Polynucleotide phosphorylase (PNPase) is an exoribonuclease that cleaves single-stranded RNA substrates with 3′–5′ directionality and processive behaviour. Its ring-like, trimeric architecture creates a central channel where phosphorolytic active sites reside. One face of the ring is decorated with RNA-binding K-homology (KH) and S1 domains, but exactly how these domains help to direct the 3′ end of single-stranded RNA substrates towards the active sites is an unsolved puzzle. Insight into this process is provided by our crystal structures of RNA-bound and apo Caulobacter crescentus PNPase. In the RNA-free form, the S1 domains adopt a ‘splayed’ conformation that may facilitate capture of RNA substrates. In the RNA-bound structure, the three KH domains collectively close upon the RNA and direct the 3′ end towards a constricted aperture at the entrance of the central channel. The KH domains make non-equivalent interactions with the RNA, and there is a marked asymmetry within the catalytic core of the enzyme. On the basis of these data, we propose that structural non-equivalence, induced upon RNA binding, helps to channel substrate to the active sites through mechanical ratcheting. Structural and biochemical analyses also reveal the basis for PNPase association with RNase E in the multi-enzyme RNA degradosome assembly of the α-proteobacteria.
doi_str_mv 10.1098/rsob.120028
format Article
fullrecord <record><control><sourceid>proquest_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rsob_120028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b6a22234e53b4f1ebebf233bc94b888b</doaj_id><sourcerecordid>1021981723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c610t-c4d1f40ec98ad5e586da1c600f9d90eccbd3dc65caa3d872c0156cd38cea4d643</originalsourceid><addsrcrecordid>eNp9kltrFDEUxwdRbFn75LvkUZCtuc3tRaiL1UK1sGpffAi5nNlNzUy2yczi-EH8vGY7ddkKGgi5nH9-5-Twz7LnBJ8SXFevQ_TqlFCMafUoO6aYF3PKOXl8sD_KTmK8wWnkBak5eZodUVpSjgtynP1ahDH20qHYh0H3QwDkG7SQg_NK6h4C0gGihq4fItp4N3aDduB7awBt1j6mGUYnI6AAW5AuIola0GvZ2djuUMtPZygOKuFlD2gX6MA5262Q7Mxd1MAqSOOjbwHJGKFVbnyWPWkSDE7u11n29fzdl8WH-eXV-4vF2eVcFwT3c80NaTgGXVfS5JBXhZFEFxg3tanTtVaGGV3kWkpmqpJqTPJCG1ZpkNwUnM2yi4lrvLwRm2BbGUbhpRV3Fz6shAy9TV8WqpCUUsYhZ4o3BBSohjKmdM1VVVUqsd5MrM2gWjC7ngXpHkAfRjq7Fiu_FYyVRclwAry8BwR_O0DsRWtT652THfghCoIpqStSpqyz7NUk1cHHGKDZpyFY7IwhdsYQkzGS-sVhZXvtHxskAZ4EwY-p3V5b6Edx44fQpeM_mN_-92T5-ertlloucMUIzmmdE_HTbiYEFTbGAQQ_JP5Fn090G3v4sS9Yhu8itarMxXXFxfn1x6IueS2W7Deqr_iZ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1021981723</pqid></control><display><type>article</type><title>Crystal structure of Caulobacter crescentus polynucleotide phosphorylase reveals a mechanism of RNA substrate channelling and RNA degradosome assembly</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Royal Society Open Access Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Hardwick, Steven W. ; Gubbey, Tobias ; Hug, Isabelle ; Jenal, Urs ; Luisi, Ben F.</creator><creatorcontrib>Hardwick, Steven W. ; Gubbey, Tobias ; Hug, Isabelle ; Jenal, Urs ; Luisi, Ben F.</creatorcontrib><description>Polynucleotide phosphorylase (PNPase) is an exoribonuclease that cleaves single-stranded RNA substrates with 3′–5′ directionality and processive behaviour. Its ring-like, trimeric architecture creates a central channel where phosphorolytic active sites reside. One face of the ring is decorated with RNA-binding K-homology (KH) and S1 domains, but exactly how these domains help to direct the 3′ end of single-stranded RNA substrates towards the active sites is an unsolved puzzle. Insight into this process is provided by our crystal structures of RNA-bound and apo Caulobacter crescentus PNPase. In the RNA-free form, the S1 domains adopt a ‘splayed’ conformation that may facilitate capture of RNA substrates. In the RNA-bound structure, the three KH domains collectively close upon the RNA and direct the 3′ end towards a constricted aperture at the entrance of the central channel. The KH domains make non-equivalent interactions with the RNA, and there is a marked asymmetry within the catalytic core of the enzyme. On the basis of these data, we propose that structural non-equivalence, induced upon RNA binding, helps to channel substrate to the active sites through mechanical ratcheting. Structural and biochemical analyses also reveal the basis for PNPase association with RNase E in the multi-enzyme RNA degradosome assembly of the α-proteobacteria.</description><identifier>ISSN: 2046-2441</identifier><identifier>EISSN: 2046-2441</identifier><identifier>DOI: 10.1098/rsob.120028</identifier><identifier>PMID: 22724061</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Base Sequence ; Catalytic Domain ; Caulobacter crescentus ; Caulobacter crescentus - enzymology ; Caulobacter crescentus - genetics ; Caulobacter crescentus - metabolism ; Conformational Asymmetry ; Crystallography, X-Ray ; Endoribonucleases - chemistry ; Endoribonucleases - genetics ; Endoribonucleases - metabolism ; Exoribonucleases - chemistry ; Exoribonucleases - genetics ; Exoribonucleases - metabolism ; Models, Molecular ; Molecular Ratchet ; Multienzyme Complexes - metabolism ; Mutation ; Polynucleotide Phosphorylase ; Polyribonucleotide Nucleotidyltransferase - chemistry ; Polyribonucleotide Nucleotidyltransferase - genetics ; Polyribonucleotide Nucleotidyltransferase - metabolism ; Protein Conformation ; Protein Interaction Domains and Motifs ; Protein Structure, Quaternary ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; RNA degradosome ; RNA Helicases - metabolism ; RNA, Bacterial - genetics ; RNA, Bacterial - metabolism ; RNA–protein interactions ; Substrate Specificity</subject><ispartof>Open biology, 2012-04, Vol.2 (4), p.120028-120028</ispartof><rights>2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c610t-c4d1f40ec98ad5e586da1c600f9d90eccbd3dc65caa3d872c0156cd38cea4d643</citedby><cites>FETCH-LOGICAL-c610t-c4d1f40ec98ad5e586da1c600f9d90eccbd3dc65caa3d872c0156cd38cea4d643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376730/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376730/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,3308,27126,27903,27904,53770,53772,55534,55544</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22724061$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hardwick, Steven W.</creatorcontrib><creatorcontrib>Gubbey, Tobias</creatorcontrib><creatorcontrib>Hug, Isabelle</creatorcontrib><creatorcontrib>Jenal, Urs</creatorcontrib><creatorcontrib>Luisi, Ben F.</creatorcontrib><title>Crystal structure of Caulobacter crescentus polynucleotide phosphorylase reveals a mechanism of RNA substrate channelling and RNA degradosome assembly</title><title>Open biology</title><addtitle>Open Biol</addtitle><addtitle>Open Biol</addtitle><description>Polynucleotide phosphorylase (PNPase) is an exoribonuclease that cleaves single-stranded RNA substrates with 3′–5′ directionality and processive behaviour. Its ring-like, trimeric architecture creates a central channel where phosphorolytic active sites reside. One face of the ring is decorated with RNA-binding K-homology (KH) and S1 domains, but exactly how these domains help to direct the 3′ end of single-stranded RNA substrates towards the active sites is an unsolved puzzle. Insight into this process is provided by our crystal structures of RNA-bound and apo Caulobacter crescentus PNPase. In the RNA-free form, the S1 domains adopt a ‘splayed’ conformation that may facilitate capture of RNA substrates. In the RNA-bound structure, the three KH domains collectively close upon the RNA and direct the 3′ end towards a constricted aperture at the entrance of the central channel. The KH domains make non-equivalent interactions with the RNA, and there is a marked asymmetry within the catalytic core of the enzyme. On the basis of these data, we propose that structural non-equivalence, induced upon RNA binding, helps to channel substrate to the active sites through mechanical ratcheting. Structural and biochemical analyses also reveal the basis for PNPase association with RNase E in the multi-enzyme RNA degradosome assembly of the α-proteobacteria.</description><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Base Sequence</subject><subject>Catalytic Domain</subject><subject>Caulobacter crescentus</subject><subject>Caulobacter crescentus - enzymology</subject><subject>Caulobacter crescentus - genetics</subject><subject>Caulobacter crescentus - metabolism</subject><subject>Conformational Asymmetry</subject><subject>Crystallography, X-Ray</subject><subject>Endoribonucleases - chemistry</subject><subject>Endoribonucleases - genetics</subject><subject>Endoribonucleases - metabolism</subject><subject>Exoribonucleases - chemistry</subject><subject>Exoribonucleases - genetics</subject><subject>Exoribonucleases - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular Ratchet</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Mutation</subject><subject>Polynucleotide Phosphorylase</subject><subject>Polyribonucleotide Nucleotidyltransferase - chemistry</subject><subject>Polyribonucleotide Nucleotidyltransferase - genetics</subject><subject>Polyribonucleotide Nucleotidyltransferase - metabolism</subject><subject>Protein Conformation</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Structure, Quaternary</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>RNA degradosome</subject><subject>RNA Helicases - metabolism</subject><subject>RNA, Bacterial - genetics</subject><subject>RNA, Bacterial - metabolism</subject><subject>RNA–protein interactions</subject><subject>Substrate Specificity</subject><issn>2046-2441</issn><issn>2046-2441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNp9kltrFDEUxwdRbFn75LvkUZCtuc3tRaiL1UK1sGpffAi5nNlNzUy2yczi-EH8vGY7ddkKGgi5nH9-5-Twz7LnBJ8SXFevQ_TqlFCMafUoO6aYF3PKOXl8sD_KTmK8wWnkBak5eZodUVpSjgtynP1ahDH20qHYh0H3QwDkG7SQg_NK6h4C0gGihq4fItp4N3aDduB7awBt1j6mGUYnI6AAW5AuIola0GvZ2djuUMtPZygOKuFlD2gX6MA5262Q7Mxd1MAqSOOjbwHJGKFVbnyWPWkSDE7u11n29fzdl8WH-eXV-4vF2eVcFwT3c80NaTgGXVfS5JBXhZFEFxg3tanTtVaGGV3kWkpmqpJqTPJCG1ZpkNwUnM2yi4lrvLwRm2BbGUbhpRV3Fz6shAy9TV8WqpCUUsYhZ4o3BBSohjKmdM1VVVUqsd5MrM2gWjC7ngXpHkAfRjq7Fiu_FYyVRclwAry8BwR_O0DsRWtT652THfghCoIpqStSpqyz7NUk1cHHGKDZpyFY7IwhdsYQkzGS-sVhZXvtHxskAZ4EwY-p3V5b6Edx44fQpeM_mN_-92T5-ertlloucMUIzmmdE_HTbiYEFTbGAQQ_JP5Fn090G3v4sS9Yhu8itarMxXXFxfn1x6IueS2W7Deqr_iZ</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Hardwick, Steven W.</creator><creator>Gubbey, Tobias</creator><creator>Hug, Isabelle</creator><creator>Jenal, Urs</creator><creator>Luisi, Ben F.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120401</creationdate><title>Crystal structure of Caulobacter crescentus polynucleotide phosphorylase reveals a mechanism of RNA substrate channelling and RNA degradosome assembly</title><author>Hardwick, Steven W. ; Gubbey, Tobias ; Hug, Isabelle ; Jenal, Urs ; Luisi, Ben F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c610t-c4d1f40ec98ad5e586da1c600f9d90eccbd3dc65caa3d872c0156cd38cea4d643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Base Sequence</topic><topic>Catalytic Domain</topic><topic>Caulobacter crescentus</topic><topic>Caulobacter crescentus - enzymology</topic><topic>Caulobacter crescentus - genetics</topic><topic>Caulobacter crescentus - metabolism</topic><topic>Conformational Asymmetry</topic><topic>Crystallography, X-Ray</topic><topic>Endoribonucleases - chemistry</topic><topic>Endoribonucleases - genetics</topic><topic>Endoribonucleases - metabolism</topic><topic>Exoribonucleases - chemistry</topic><topic>Exoribonucleases - genetics</topic><topic>Exoribonucleases - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular Ratchet</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Mutation</topic><topic>Polynucleotide Phosphorylase</topic><topic>Polyribonucleotide Nucleotidyltransferase - chemistry</topic><topic>Polyribonucleotide Nucleotidyltransferase - genetics</topic><topic>Polyribonucleotide Nucleotidyltransferase - metabolism</topic><topic>Protein Conformation</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Structure, Quaternary</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>RNA degradosome</topic><topic>RNA Helicases - metabolism</topic><topic>RNA, Bacterial - genetics</topic><topic>RNA, Bacterial - metabolism</topic><topic>RNA–protein interactions</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hardwick, Steven W.</creatorcontrib><creatorcontrib>Gubbey, Tobias</creatorcontrib><creatorcontrib>Hug, Isabelle</creatorcontrib><creatorcontrib>Jenal, Urs</creatorcontrib><creatorcontrib>Luisi, Ben F.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Open biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hardwick, Steven W.</au><au>Gubbey, Tobias</au><au>Hug, Isabelle</au><au>Jenal, Urs</au><au>Luisi, Ben F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal structure of Caulobacter crescentus polynucleotide phosphorylase reveals a mechanism of RNA substrate channelling and RNA degradosome assembly</atitle><jtitle>Open biology</jtitle><stitle>Open Biol</stitle><addtitle>Open Biol</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>2</volume><issue>4</issue><spage>120028</spage><epage>120028</epage><pages>120028-120028</pages><issn>2046-2441</issn><eissn>2046-2441</eissn><abstract>Polynucleotide phosphorylase (PNPase) is an exoribonuclease that cleaves single-stranded RNA substrates with 3′–5′ directionality and processive behaviour. Its ring-like, trimeric architecture creates a central channel where phosphorolytic active sites reside. One face of the ring is decorated with RNA-binding K-homology (KH) and S1 domains, but exactly how these domains help to direct the 3′ end of single-stranded RNA substrates towards the active sites is an unsolved puzzle. Insight into this process is provided by our crystal structures of RNA-bound and apo Caulobacter crescentus PNPase. In the RNA-free form, the S1 domains adopt a ‘splayed’ conformation that may facilitate capture of RNA substrates. In the RNA-bound structure, the three KH domains collectively close upon the RNA and direct the 3′ end towards a constricted aperture at the entrance of the central channel. The KH domains make non-equivalent interactions with the RNA, and there is a marked asymmetry within the catalytic core of the enzyme. On the basis of these data, we propose that structural non-equivalence, induced upon RNA binding, helps to channel substrate to the active sites through mechanical ratcheting. Structural and biochemical analyses also reveal the basis for PNPase association with RNase E in the multi-enzyme RNA degradosome assembly of the α-proteobacteria.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>22724061</pmid><doi>10.1098/rsob.120028</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2441
ispartof Open biology, 2012-04, Vol.2 (4), p.120028-120028
issn 2046-2441
2046-2441
language eng
recordid cdi_royalsociety_journals_10_1098_rsob_120028
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Royal Society Open Access Journals; PubMed Central Open Access; PubMed Central
subjects Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Base Sequence
Catalytic Domain
Caulobacter crescentus
Caulobacter crescentus - enzymology
Caulobacter crescentus - genetics
Caulobacter crescentus - metabolism
Conformational Asymmetry
Crystallography, X-Ray
Endoribonucleases - chemistry
Endoribonucleases - genetics
Endoribonucleases - metabolism
Exoribonucleases - chemistry
Exoribonucleases - genetics
Exoribonucleases - metabolism
Models, Molecular
Molecular Ratchet
Multienzyme Complexes - metabolism
Mutation
Polynucleotide Phosphorylase
Polyribonucleotide Nucleotidyltransferase - chemistry
Polyribonucleotide Nucleotidyltransferase - genetics
Polyribonucleotide Nucleotidyltransferase - metabolism
Protein Conformation
Protein Interaction Domains and Motifs
Protein Structure, Quaternary
Recombinant Fusion Proteins - chemistry
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
RNA degradosome
RNA Helicases - metabolism
RNA, Bacterial - genetics
RNA, Bacterial - metabolism
RNA–protein interactions
Substrate Specificity
title Crystal structure of Caulobacter crescentus polynucleotide phosphorylase reveals a mechanism of RNA substrate channelling and RNA degradosome assembly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A36%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20structure%20of%20Caulobacter%20crescentus%20polynucleotide%20phosphorylase%20reveals%20a%20mechanism%20of%20RNA%20substrate%20channelling%20and%20RNA%20degradosome%20assembly&rft.jtitle=Open%20biology&rft.au=Hardwick,%20Steven%20W.&rft.date=2012-04-01&rft.volume=2&rft.issue=4&rft.spage=120028&rft.epage=120028&rft.pages=120028-120028&rft.issn=2046-2441&rft.eissn=2046-2441&rft_id=info:doi/10.1098/rsob.120028&rft_dat=%3Cproquest_royal%3E1021981723%3C/proquest_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1021981723&rft_id=info:pmid/22724061&rft_doaj_id=oai_doaj_org_article_b6a22234e53b4f1ebebf233bc94b888b&rfr_iscdi=true