Hermite regression analysis of multi-modal count data

We discuss the modeling of count data whose empirical distribution is both multi-modal and over-dispersed, and propose the Hermite distribution with covariates introduced through the conditional mean. The model is readily estimated by maximum likelihood, and nests the Poisson model as a special case...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Economics bulletin 2010, Vol.30 (4), p.2936-2945
1. Verfasser: Giles, David E. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2945
container_issue 4
container_start_page 2936
container_title Economics bulletin
container_volume 30
creator Giles, David E. A
description We discuss the modeling of count data whose empirical distribution is both multi-modal and over-dispersed, and propose the Hermite distribution with covariates introduced through the conditional mean. The model is readily estimated by maximum likelihood, and nests the Poisson model as a special case. The Hermite regression model is applied to data for the number of banking and currency crises in IMF-member countries, and is found to out-perform the Poisson and negative binomial models.
format Article
fullrecord <record><control><sourceid>repec</sourceid><recordid>TN_cdi_repec_primary_eblecbull_eb_10_00512_htm</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>eblecbull_eb_10_00512_htm</sourcerecordid><originalsourceid>FETCH-LOGICAL-r124t-7353a8d2433b45f0f75cf6101cb7bb45b51222ad99cf5b9446bd8de78c5742ed3</originalsourceid><addsrcrecordid>eNpNjM1KAzEYAIMoWKvvkBeI5LfZPUpRKxR60XPIzxeNJLslyR769i7owdMMc5grtGFKKsJHzq7_-S26a-2bUi44YxukDlBL6oArfFZoLc0TtpPNl5YaniMuS-6JlDnYjP28TB0H2-09uok2N3j44xZ9vDy_7w_keHp92z8dSWVcdqKFEnYIXArhpIo0auXjjlHmnXZrcYpxzm0YRx-VG6XcuTAE0INXWnIIYosef78VzuDNuaZi68WAy-DdkvNqhlFD6ToyX72IH3f_RvY</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hermite regression analysis of multi-modal count data</title><source>RePEc</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Giles, David E. A</creator><creatorcontrib>Giles, David E. A</creatorcontrib><description>We discuss the modeling of count data whose empirical distribution is both multi-modal and over-dispersed, and propose the Hermite distribution with covariates introduced through the conditional mean. The model is readily estimated by maximum likelihood, and nests the Poisson model as a special case. The Hermite regression model is applied to data for the number of banking and currency crises in IMF-member countries, and is found to out-perform the Poisson and negative binomial models.</description><identifier>ISSN: 1545-2921</identifier><identifier>EISSN: 1545-2921</identifier><language>eng</language><publisher>AccessEcon</publisher><subject>Count data ; financial crises ; multi-modal data ; over-dispersion</subject><ispartof>Economics bulletin, 2010, Vol.30 (4), p.2936-2945</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3994,4010</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eblecbull/eb-10-00512.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Giles, David E. A</creatorcontrib><title>Hermite regression analysis of multi-modal count data</title><title>Economics bulletin</title><description>We discuss the modeling of count data whose empirical distribution is both multi-modal and over-dispersed, and propose the Hermite distribution with covariates introduced through the conditional mean. The model is readily estimated by maximum likelihood, and nests the Poisson model as a special case. The Hermite regression model is applied to data for the number of banking and currency crises in IMF-member countries, and is found to out-perform the Poisson and negative binomial models.</description><subject>Count data</subject><subject>financial crises</subject><subject>multi-modal data</subject><subject>over-dispersion</subject><issn>1545-2921</issn><issn>1545-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNpNjM1KAzEYAIMoWKvvkBeI5LfZPUpRKxR60XPIzxeNJLslyR769i7owdMMc5grtGFKKsJHzq7_-S26a-2bUi44YxukDlBL6oArfFZoLc0TtpPNl5YaniMuS-6JlDnYjP28TB0H2-09uok2N3j44xZ9vDy_7w_keHp92z8dSWVcdqKFEnYIXArhpIo0auXjjlHmnXZrcYpxzm0YRx-VG6XcuTAE0INXWnIIYosef78VzuDNuaZi68WAy-DdkvNqhlFD6ToyX72IH3f_RvY</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Giles, David E. A</creator><general>AccessEcon</general><scope>DKI</scope><scope>X2L</scope></search><sort><creationdate>2010</creationdate><title>Hermite regression analysis of multi-modal count data</title><author>Giles, David E. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-r124t-7353a8d2433b45f0f75cf6101cb7bb45b51222ad99cf5b9446bd8de78c5742ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Count data</topic><topic>financial crises</topic><topic>multi-modal data</topic><topic>over-dispersion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giles, David E. A</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><jtitle>Economics bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giles, David E. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hermite regression analysis of multi-modal count data</atitle><jtitle>Economics bulletin</jtitle><date>2010</date><risdate>2010</risdate><volume>30</volume><issue>4</issue><spage>2936</spage><epage>2945</epage><pages>2936-2945</pages><issn>1545-2921</issn><eissn>1545-2921</eissn><abstract>We discuss the modeling of count data whose empirical distribution is both multi-modal and over-dispersed, and propose the Hermite distribution with covariates introduced through the conditional mean. The model is readily estimated by maximum likelihood, and nests the Poisson model as a special case. The Hermite regression model is applied to data for the number of banking and currency crises in IMF-member countries, and is found to out-perform the Poisson and negative binomial models.</abstract><pub>AccessEcon</pub><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1545-2921
ispartof Economics bulletin, 2010, Vol.30 (4), p.2936-2945
issn 1545-2921
1545-2921
language eng
recordid cdi_repec_primary_eblecbull_eb_10_00512_htm
source RePEc; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Count data
financial crises
multi-modal data
over-dispersion
title Hermite regression analysis of multi-modal count data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A22%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-repec&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hermite%20regression%20analysis%20of%20multi-modal%20count%20data&rft.jtitle=Economics%20bulletin&rft.au=Giles,%20David%20E.%20A&rft.date=2010&rft.volume=30&rft.issue=4&rft.spage=2936&rft.epage=2945&rft.pages=2936-2945&rft.issn=1545-2921&rft.eissn=1545-2921&rft_id=info:doi/&rft_dat=%3Crepec%3Eeblecbull_eb_10_00512_htm%3C/repec%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true