Bioinspired and Bioderived Aqueous Electrocatalysis
The development of efficient and sustainable electrochemical systems able to provide clean-energy fuels and chemicals is one of the main current challenges of materials science and engineering. Over the last decades, significant advances have been made in the development of robust electrocatalysts f...
Gespeichert in:
Veröffentlicht in: | Chemical reviews 2023-03, Vol.123 (5), p.2311-2348 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2348 |
---|---|
container_issue | 5 |
container_start_page | 2311 |
container_title | Chemical reviews |
container_volume | 123 |
creator | Barrio, Jesús Pedersen, Angus Favero, Silvia Luo, Hui Wang, Mengnan Sarma, Saurav Ch Feng, Jingyu Ngoc, Linh Tran Thi Kellner, Simon Li, Alain You Jorge Sobrido, Ana Belén Titirici, Maria-Magdalena |
description | The development of efficient and sustainable electrochemical systems able to provide clean-energy fuels and chemicals is one of the main current challenges of materials science and engineering. Over the last decades, significant advances have been made in the development of robust electrocatalysts for different reactions, with fundamental insights from both computational and experimental work. Some of the most promising systems in the literature are based on expensive and scarce platinum-group metals; however, natural enzymes show the highest per-site catalytic activities, while their active sites are based exclusively on earth-abundant metals. Additionally, natural biomass provides a valuable feedstock for producing advanced carbonaceous materials with porous hierarchical structures. Utilizing resources and design inspiration from nature can help create more sustainable and cost-effective strategies for manufacturing cost-effective, sustainable, and robust electrochemical materials and devices. This review spans from materials to device engineering; we initially discuss the design of carbon-based materials with bioinspired features (such as enzyme active sites), the utilization of biomass resources to construct tailored carbon materials, and their activity in aqueous electrocatalysis for water splitting, oxygen reduction, and CO2 reduction. We then delve in the applicability of bioinspired features in electrochemical devices, such as the engineering of bioinspired mass transport and electrode interfaces. Finally, we address remaining challenges, such as the stability of bioinspired active sites or the activity of metal-free carbon materials, and discuss new potential research directions that can open the gates to the implementation of bioinspired sustainable materials in electrochemical devices. |
doi_str_mv | 10.1021/acs.chemrev.2c00429 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9999430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785260999</sourcerecordid><originalsourceid>FETCH-LOGICAL-a473t-57f682b0b33195595375821504fcf620d0a530dc7eb83b5397816b5aa3b114b73</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMotlZ_gSAFN26mvUkmycxGqKU-oOBG1yGTydiUedRkptB_b0rHoi7MJlzynXNzOAhdY5hgIHiqtJ_olamc2U6IBohJeoKGmBGIeJLCKRoCQBoRztkAXXi_DiNjRJyjAeWUxTGBIaIPtrG131hn8rGq83GYc-PsNoyzz840nR8vSqNb12jVqnLnrb9EZ4Uqvbnq7xF6f1y8zZ-j5evTy3y2jFQsaBsxUfCEZJBRilPGUkYFSwhmEBe64ARyUIxCroXJEpoxmooE84wpRTOM40zQEbo_-G66rDK5NnXrVCk3zlbK7WSjrPz9UtuV_Gi2Mg0nphAM7noD14QsvpWV9dqUpar3wSQRlGHOqUgDevsHXTedq0O8QCWMcAiegaIHSrvGe2eK42cwyH0pMpQi-1JkX0pQ3fzMcdR8txCA6QHYq497_7P8AuYnmiM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785260999</pqid></control><display><type>article</type><title>Bioinspired and Bioderived Aqueous Electrocatalysis</title><source>ACS Publications</source><creator>Barrio, Jesús ; Pedersen, Angus ; Favero, Silvia ; Luo, Hui ; Wang, Mengnan ; Sarma, Saurav Ch ; Feng, Jingyu ; Ngoc, Linh Tran Thi ; Kellner, Simon ; Li, Alain You ; Jorge Sobrido, Ana Belén ; Titirici, Maria-Magdalena</creator><creatorcontrib>Barrio, Jesús ; Pedersen, Angus ; Favero, Silvia ; Luo, Hui ; Wang, Mengnan ; Sarma, Saurav Ch ; Feng, Jingyu ; Ngoc, Linh Tran Thi ; Kellner, Simon ; Li, Alain You ; Jorge Sobrido, Ana Belén ; Titirici, Maria-Magdalena</creatorcontrib><description>The development of efficient and sustainable electrochemical systems able to provide clean-energy fuels and chemicals is one of the main current challenges of materials science and engineering. Over the last decades, significant advances have been made in the development of robust electrocatalysts for different reactions, with fundamental insights from both computational and experimental work. Some of the most promising systems in the literature are based on expensive and scarce platinum-group metals; however, natural enzymes show the highest per-site catalytic activities, while their active sites are based exclusively on earth-abundant metals. Additionally, natural biomass provides a valuable feedstock for producing advanced carbonaceous materials with porous hierarchical structures. Utilizing resources and design inspiration from nature can help create more sustainable and cost-effective strategies for manufacturing cost-effective, sustainable, and robust electrochemical materials and devices. This review spans from materials to device engineering; we initially discuss the design of carbon-based materials with bioinspired features (such as enzyme active sites), the utilization of biomass resources to construct tailored carbon materials, and their activity in aqueous electrocatalysis for water splitting, oxygen reduction, and CO2 reduction. We then delve in the applicability of bioinspired features in electrochemical devices, such as the engineering of bioinspired mass transport and electrode interfaces. Finally, we address remaining challenges, such as the stability of bioinspired active sites or the activity of metal-free carbon materials, and discuss new potential research directions that can open the gates to the implementation of bioinspired sustainable materials in electrochemical devices.</description><identifier>ISSN: 0009-2665</identifier><identifier>ISSN: 1520-6890</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.2c00429</identifier><identifier>PMID: 36354420</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biomass ; Biomimetics ; Carbon ; Carbon dioxide ; Carbonaceous materials ; Clean energy ; Electrocatalysis ; Electrocatalysts ; Electrochemistry ; Engineering ; Interface stability ; Mass transport ; Materials science ; Platinum ; Platinum metals ; Porous materials ; Production costs ; Renewable energy ; Review ; Sustainability ; Sustainable development ; Sustainable materials ; Water splitting</subject><ispartof>Chemical reviews, 2023-03, Vol.123 (5), p.2311-2348</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Mar 8, 2023</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a473t-57f682b0b33195595375821504fcf620d0a530dc7eb83b5397816b5aa3b114b73</citedby><cites>FETCH-LOGICAL-a473t-57f682b0b33195595375821504fcf620d0a530dc7eb83b5397816b5aa3b114b73</cites><orcidid>0000-0003-0773-2100 ; 0000-0002-4147-2667 ; 0000-0002-8798-4991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.2c00429$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemrev.2c00429$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36354420$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barrio, Jesús</creatorcontrib><creatorcontrib>Pedersen, Angus</creatorcontrib><creatorcontrib>Favero, Silvia</creatorcontrib><creatorcontrib>Luo, Hui</creatorcontrib><creatorcontrib>Wang, Mengnan</creatorcontrib><creatorcontrib>Sarma, Saurav Ch</creatorcontrib><creatorcontrib>Feng, Jingyu</creatorcontrib><creatorcontrib>Ngoc, Linh Tran Thi</creatorcontrib><creatorcontrib>Kellner, Simon</creatorcontrib><creatorcontrib>Li, Alain You</creatorcontrib><creatorcontrib>Jorge Sobrido, Ana Belén</creatorcontrib><creatorcontrib>Titirici, Maria-Magdalena</creatorcontrib><title>Bioinspired and Bioderived Aqueous Electrocatalysis</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>The development of efficient and sustainable electrochemical systems able to provide clean-energy fuels and chemicals is one of the main current challenges of materials science and engineering. Over the last decades, significant advances have been made in the development of robust electrocatalysts for different reactions, with fundamental insights from both computational and experimental work. Some of the most promising systems in the literature are based on expensive and scarce platinum-group metals; however, natural enzymes show the highest per-site catalytic activities, while their active sites are based exclusively on earth-abundant metals. Additionally, natural biomass provides a valuable feedstock for producing advanced carbonaceous materials with porous hierarchical structures. Utilizing resources and design inspiration from nature can help create more sustainable and cost-effective strategies for manufacturing cost-effective, sustainable, and robust electrochemical materials and devices. This review spans from materials to device engineering; we initially discuss the design of carbon-based materials with bioinspired features (such as enzyme active sites), the utilization of biomass resources to construct tailored carbon materials, and their activity in aqueous electrocatalysis for water splitting, oxygen reduction, and CO2 reduction. We then delve in the applicability of bioinspired features in electrochemical devices, such as the engineering of bioinspired mass transport and electrode interfaces. Finally, we address remaining challenges, such as the stability of bioinspired active sites or the activity of metal-free carbon materials, and discuss new potential research directions that can open the gates to the implementation of bioinspired sustainable materials in electrochemical devices.</description><subject>Biomass</subject><subject>Biomimetics</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbonaceous materials</subject><subject>Clean energy</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Engineering</subject><subject>Interface stability</subject><subject>Mass transport</subject><subject>Materials science</subject><subject>Platinum</subject><subject>Platinum metals</subject><subject>Porous materials</subject><subject>Production costs</subject><subject>Renewable energy</subject><subject>Review</subject><subject>Sustainability</subject><subject>Sustainable development</subject><subject>Sustainable materials</subject><subject>Water splitting</subject><issn>0009-2665</issn><issn>1520-6890</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLAzEUhYMotlZ_gSAFN26mvUkmycxGqKU-oOBG1yGTydiUedRkptB_b0rHoi7MJlzynXNzOAhdY5hgIHiqtJ_olamc2U6IBohJeoKGmBGIeJLCKRoCQBoRztkAXXi_DiNjRJyjAeWUxTGBIaIPtrG131hn8rGq83GYc-PsNoyzz840nR8vSqNb12jVqnLnrb9EZ4Uqvbnq7xF6f1y8zZ-j5evTy3y2jFQsaBsxUfCEZJBRilPGUkYFSwhmEBe64ARyUIxCroXJEpoxmooE84wpRTOM40zQEbo_-G66rDK5NnXrVCk3zlbK7WSjrPz9UtuV_Gi2Mg0nphAM7noD14QsvpWV9dqUpar3wSQRlGHOqUgDevsHXTedq0O8QCWMcAiegaIHSrvGe2eK42cwyH0pMpQi-1JkX0pQ3fzMcdR8txCA6QHYq497_7P8AuYnmiM</recordid><startdate>20230308</startdate><enddate>20230308</enddate><creator>Barrio, Jesús</creator><creator>Pedersen, Angus</creator><creator>Favero, Silvia</creator><creator>Luo, Hui</creator><creator>Wang, Mengnan</creator><creator>Sarma, Saurav Ch</creator><creator>Feng, Jingyu</creator><creator>Ngoc, Linh Tran Thi</creator><creator>Kellner, Simon</creator><creator>Li, Alain You</creator><creator>Jorge Sobrido, Ana Belén</creator><creator>Titirici, Maria-Magdalena</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0773-2100</orcidid><orcidid>https://orcid.org/0000-0002-4147-2667</orcidid><orcidid>https://orcid.org/0000-0002-8798-4991</orcidid></search><sort><creationdate>20230308</creationdate><title>Bioinspired and Bioderived Aqueous Electrocatalysis</title><author>Barrio, Jesús ; Pedersen, Angus ; Favero, Silvia ; Luo, Hui ; Wang, Mengnan ; Sarma, Saurav Ch ; Feng, Jingyu ; Ngoc, Linh Tran Thi ; Kellner, Simon ; Li, Alain You ; Jorge Sobrido, Ana Belén ; Titirici, Maria-Magdalena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a473t-57f682b0b33195595375821504fcf620d0a530dc7eb83b5397816b5aa3b114b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomass</topic><topic>Biomimetics</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbonaceous materials</topic><topic>Clean energy</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Engineering</topic><topic>Interface stability</topic><topic>Mass transport</topic><topic>Materials science</topic><topic>Platinum</topic><topic>Platinum metals</topic><topic>Porous materials</topic><topic>Production costs</topic><topic>Renewable energy</topic><topic>Review</topic><topic>Sustainability</topic><topic>Sustainable development</topic><topic>Sustainable materials</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barrio, Jesús</creatorcontrib><creatorcontrib>Pedersen, Angus</creatorcontrib><creatorcontrib>Favero, Silvia</creatorcontrib><creatorcontrib>Luo, Hui</creatorcontrib><creatorcontrib>Wang, Mengnan</creatorcontrib><creatorcontrib>Sarma, Saurav Ch</creatorcontrib><creatorcontrib>Feng, Jingyu</creatorcontrib><creatorcontrib>Ngoc, Linh Tran Thi</creatorcontrib><creatorcontrib>Kellner, Simon</creatorcontrib><creatorcontrib>Li, Alain You</creatorcontrib><creatorcontrib>Jorge Sobrido, Ana Belén</creatorcontrib><creatorcontrib>Titirici, Maria-Magdalena</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barrio, Jesús</au><au>Pedersen, Angus</au><au>Favero, Silvia</au><au>Luo, Hui</au><au>Wang, Mengnan</au><au>Sarma, Saurav Ch</au><au>Feng, Jingyu</au><au>Ngoc, Linh Tran Thi</au><au>Kellner, Simon</au><au>Li, Alain You</au><au>Jorge Sobrido, Ana Belén</au><au>Titirici, Maria-Magdalena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioinspired and Bioderived Aqueous Electrocatalysis</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2023-03-08</date><risdate>2023</risdate><volume>123</volume><issue>5</issue><spage>2311</spage><epage>2348</epage><pages>2311-2348</pages><issn>0009-2665</issn><issn>1520-6890</issn><eissn>1520-6890</eissn><abstract>The development of efficient and sustainable electrochemical systems able to provide clean-energy fuels and chemicals is one of the main current challenges of materials science and engineering. Over the last decades, significant advances have been made in the development of robust electrocatalysts for different reactions, with fundamental insights from both computational and experimental work. Some of the most promising systems in the literature are based on expensive and scarce platinum-group metals; however, natural enzymes show the highest per-site catalytic activities, while their active sites are based exclusively on earth-abundant metals. Additionally, natural biomass provides a valuable feedstock for producing advanced carbonaceous materials with porous hierarchical structures. Utilizing resources and design inspiration from nature can help create more sustainable and cost-effective strategies for manufacturing cost-effective, sustainable, and robust electrochemical materials and devices. This review spans from materials to device engineering; we initially discuss the design of carbon-based materials with bioinspired features (such as enzyme active sites), the utilization of biomass resources to construct tailored carbon materials, and their activity in aqueous electrocatalysis for water splitting, oxygen reduction, and CO2 reduction. We then delve in the applicability of bioinspired features in electrochemical devices, such as the engineering of bioinspired mass transport and electrode interfaces. Finally, we address remaining challenges, such as the stability of bioinspired active sites or the activity of metal-free carbon materials, and discuss new potential research directions that can open the gates to the implementation of bioinspired sustainable materials in electrochemical devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36354420</pmid><doi>10.1021/acs.chemrev.2c00429</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0003-0773-2100</orcidid><orcidid>https://orcid.org/0000-0002-4147-2667</orcidid><orcidid>https://orcid.org/0000-0002-8798-4991</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2665 |
ispartof | Chemical reviews, 2023-03, Vol.123 (5), p.2311-2348 |
issn | 0009-2665 1520-6890 1520-6890 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9999430 |
source | ACS Publications |
subjects | Biomass Biomimetics Carbon Carbon dioxide Carbonaceous materials Clean energy Electrocatalysis Electrocatalysts Electrochemistry Engineering Interface stability Mass transport Materials science Platinum Platinum metals Porous materials Production costs Renewable energy Review Sustainability Sustainable development Sustainable materials Water splitting |
title | Bioinspired and Bioderived Aqueous Electrocatalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A26%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioinspired%20and%20Bioderived%20Aqueous%20Electrocatalysis&rft.jtitle=Chemical%20reviews&rft.au=Barrio,%20Jesu%CC%81s&rft.date=2023-03-08&rft.volume=123&rft.issue=5&rft.spage=2311&rft.epage=2348&rft.pages=2311-2348&rft.issn=0009-2665&rft.eissn=1520-6890&rft_id=info:doi/10.1021/acs.chemrev.2c00429&rft_dat=%3Cproquest_pubme%3E2785260999%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785260999&rft_id=info:pmid/36354420&rfr_iscdi=true |