Robust deep learning-based protein sequence design using ProteinMPNN
Although deep learning has revolutionized protein structure prediction, almost all experimentally characterized de novo protein designs have been generated using physically based approaches such as Rosetta. Here, we describe a deep learning-based protein sequence design method, ProteinMPNN, that has...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2022-10, Vol.378 (6615), p.49-56 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56 |
---|---|
container_issue | 6615 |
container_start_page | 49 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 378 |
creator | Dauparas, J Anishchenko, I Bennett, N Bai, H Ragotte, R J Milles, L F Wicky, B I M Courbet, A de Haas, R J Bethel, N Leung, P J Y Huddy, T F Pellock, S Tischer, D Chan, F Koepnick, B Nguyen, H Kang, A Sankaran, B Bera, A K King, N P Baker, D |
description | Although deep learning has revolutionized protein structure prediction, almost all experimentally characterized de novo protein designs have been generated using physically based approaches such as Rosetta. Here, we describe a deep learning-based protein sequence design method, ProteinMPNN, that has outstanding performance in both in silico and experimental tests. On native protein backbones, ProteinMPNN has a sequence recovery of 52.4% compared with 32.9% for Rosetta. The amino acid sequence at different positions can be coupled between single or multiple chains, enabling application to a wide range of current protein design challenges. We demonstrate the broad utility and high accuracy of ProteinMPNN using x-ray crystallography, cryo-electron microscopy, and functional studies by rescuing previously failed designs, which were made using Rosetta or AlphaFold, of protein monomers, cyclic homo-oligomers, tetrahedral nanoparticles, and target-binding proteins. |
doi_str_mv | 10.1126/science.add2187 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9997061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2715442089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-ac6418abe76a768d7bb5a07f69da8d4b1a096693a3e6db37a82376865865fac83</originalsourceid><addsrcrecordid>eNpdkd1LHDEUxYO06FZ99q0M9aUvozeTyddLQewnWJXSPodMcneNzCZrMlPof98su5W2EMjD-eWc3HsIOaNwQWknLosLGB1eWO87quQBWVDQvNUdsBdkAcBEq0DyI_KqlEeAqml2SI6YoKCAw4K8_5aGuUyNR9w0I9ocQ1y1gy3om01OE4bYFHyatykVKmEVm7lUprnfqV_vb29PyMulHQue7u9j8uPjh-_Xn9ubu09frq9uWsdpP7XWiZ4qO6AUVgrl5TBwC3IptLfK9wO1oIXQzDIUfmDSqo5VTvB6ltYpdkze7Xw387BG7zBO2Y5mk8Pa5l8m2WD-VWJ4MKv002itJQhaDd7sDFKZgqnLm9A9uBQjusl0fWVgm_J2n5JTHbxMZh2Kw3G0EdNcTCcp7_sOlK7o-X_oY5pzrDuoVFcNOWesUpc7yuVUSsbl848pmG2NZl-j2ddYX7z-e9Bn_k9v7DeBX5rn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722475533</pqid></control><display><type>article</type><title>Robust deep learning-based protein sequence design using ProteinMPNN</title><source>American Association for the Advancement of Science</source><source>MEDLINE</source><creator>Dauparas, J ; Anishchenko, I ; Bennett, N ; Bai, H ; Ragotte, R J ; Milles, L F ; Wicky, B I M ; Courbet, A ; de Haas, R J ; Bethel, N ; Leung, P J Y ; Huddy, T F ; Pellock, S ; Tischer, D ; Chan, F ; Koepnick, B ; Nguyen, H ; Kang, A ; Sankaran, B ; Bera, A K ; King, N P ; Baker, D</creator><creatorcontrib>Dauparas, J ; Anishchenko, I ; Bennett, N ; Bai, H ; Ragotte, R J ; Milles, L F ; Wicky, B I M ; Courbet, A ; de Haas, R J ; Bethel, N ; Leung, P J Y ; Huddy, T F ; Pellock, S ; Tischer, D ; Chan, F ; Koepnick, B ; Nguyen, H ; Kang, A ; Sankaran, B ; Bera, A K ; King, N P ; Baker, D ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Although deep learning has revolutionized protein structure prediction, almost all experimentally characterized de novo protein designs have been generated using physically based approaches such as Rosetta. Here, we describe a deep learning-based protein sequence design method, ProteinMPNN, that has outstanding performance in both in silico and experimental tests. On native protein backbones, ProteinMPNN has a sequence recovery of 52.4% compared with 32.9% for Rosetta. The amino acid sequence at different positions can be coupled between single or multiple chains, enabling application to a wide range of current protein design challenges. We demonstrate the broad utility and high accuracy of ProteinMPNN using x-ray crystallography, cryo-electron microscopy, and functional studies by rescuing previously failed designs, which were made using Rosetta or AlphaFold, of protein monomers, cyclic homo-oligomers, tetrahedral nanoparticles, and target-binding proteins.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.add2187</identifier><identifier>PMID: 36108050</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Amino Acid Sequence ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Cyclic oligomers ; Deep Learning ; Design ; Inverse problems ; Oligomers ; Optimization ; Protein Conformation ; Protein Engineering - methods ; Protein structure ; Proteins ; Proteins - chemistry ; Science & Technology - Other Topics</subject><ispartof>Science (American Association for the Advancement of Science), 2022-10, Vol.378 (6615), p.49-56</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-ac6418abe76a768d7bb5a07f69da8d4b1a096693a3e6db37a82376865865fac83</citedby><cites>FETCH-LOGICAL-c514t-ac6418abe76a768d7bb5a07f69da8d4b1a096693a3e6db37a82376865865fac83</cites><orcidid>0000-0001-8590-1454 ; 0000-0003-3645-2044 ; 0000-0001-7576-9613 ; 0000-0002-1801-8968 ; 0000-0001-9473-2912 ; 0000-0001-7896-6217 ; 0000-0002-0030-144X ; 0000-0002-2501-7875 ; 0000-0001-9696-4004 ; 0000-0001-5487-0499 ; 0000-0003-3633-5542 ; 0000-0003-0539-7011 ; 0000-0002-0448-4052 ; 0000-0001-8417-3205 ; 0000-0002-3266-8131 ; 0000-0001-5168-8579 ; 0000-0002-2978-4692 ; 0000-0002-6463-1595 ; 0000-0002-7587-9967 ; 0000-0002-5455-416X ; 0000000194732912 ; 0000000232668131 ; 0000000264631595 ; 000000025455416X ; 0000000336335542 ; 0000000184173205 ; 0000000178966217 ; 0000000275879967 ; 0000000151688579 ; 0000000175769613 ; 0000000185901454 ; 0000000154870499 ; 000000020030144X ; 0000000225017875 ; 0000000305397011 ; 0000000336452044 ; 0000000229784692 ; 0000000204484052 ; 0000000196964004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36108050$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2470608$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dauparas, J</creatorcontrib><creatorcontrib>Anishchenko, I</creatorcontrib><creatorcontrib>Bennett, N</creatorcontrib><creatorcontrib>Bai, H</creatorcontrib><creatorcontrib>Ragotte, R J</creatorcontrib><creatorcontrib>Milles, L F</creatorcontrib><creatorcontrib>Wicky, B I M</creatorcontrib><creatorcontrib>Courbet, A</creatorcontrib><creatorcontrib>de Haas, R J</creatorcontrib><creatorcontrib>Bethel, N</creatorcontrib><creatorcontrib>Leung, P J Y</creatorcontrib><creatorcontrib>Huddy, T F</creatorcontrib><creatorcontrib>Pellock, S</creatorcontrib><creatorcontrib>Tischer, D</creatorcontrib><creatorcontrib>Chan, F</creatorcontrib><creatorcontrib>Koepnick, B</creatorcontrib><creatorcontrib>Nguyen, H</creatorcontrib><creatorcontrib>Kang, A</creatorcontrib><creatorcontrib>Sankaran, B</creatorcontrib><creatorcontrib>Bera, A K</creatorcontrib><creatorcontrib>King, N P</creatorcontrib><creatorcontrib>Baker, D</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Robust deep learning-based protein sequence design using ProteinMPNN</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Although deep learning has revolutionized protein structure prediction, almost all experimentally characterized de novo protein designs have been generated using physically based approaches such as Rosetta. Here, we describe a deep learning-based protein sequence design method, ProteinMPNN, that has outstanding performance in both in silico and experimental tests. On native protein backbones, ProteinMPNN has a sequence recovery of 52.4% compared with 32.9% for Rosetta. The amino acid sequence at different positions can be coupled between single or multiple chains, enabling application to a wide range of current protein design challenges. We demonstrate the broad utility and high accuracy of ProteinMPNN using x-ray crystallography, cryo-electron microscopy, and functional studies by rescuing previously failed designs, which were made using Rosetta or AlphaFold, of protein monomers, cyclic homo-oligomers, tetrahedral nanoparticles, and target-binding proteins.</description><subject>Amino Acid Sequence</subject><subject>Cryoelectron Microscopy</subject><subject>Crystallography, X-Ray</subject><subject>Cyclic oligomers</subject><subject>Deep Learning</subject><subject>Design</subject><subject>Inverse problems</subject><subject>Oligomers</subject><subject>Optimization</subject><subject>Protein Conformation</subject><subject>Protein Engineering - methods</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Science & Technology - Other Topics</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkd1LHDEUxYO06FZ99q0M9aUvozeTyddLQewnWJXSPodMcneNzCZrMlPof98su5W2EMjD-eWc3HsIOaNwQWknLosLGB1eWO87quQBWVDQvNUdsBdkAcBEq0DyI_KqlEeAqml2SI6YoKCAw4K8_5aGuUyNR9w0I9ocQ1y1gy3om01OE4bYFHyatykVKmEVm7lUprnfqV_vb29PyMulHQue7u9j8uPjh-_Xn9ubu09frq9uWsdpP7XWiZ4qO6AUVgrl5TBwC3IptLfK9wO1oIXQzDIUfmDSqo5VTvB6ltYpdkze7Xw387BG7zBO2Y5mk8Pa5l8m2WD-VWJ4MKv002itJQhaDd7sDFKZgqnLm9A9uBQjusl0fWVgm_J2n5JTHbxMZh2Kw3G0EdNcTCcp7_sOlK7o-X_oY5pzrDuoVFcNOWesUpc7yuVUSsbl848pmG2NZl-j2ddYX7z-e9Bn_k9v7DeBX5rn</recordid><startdate>20221007</startdate><enddate>20221007</enddate><creator>Dauparas, J</creator><creator>Anishchenko, I</creator><creator>Bennett, N</creator><creator>Bai, H</creator><creator>Ragotte, R J</creator><creator>Milles, L F</creator><creator>Wicky, B I M</creator><creator>Courbet, A</creator><creator>de Haas, R J</creator><creator>Bethel, N</creator><creator>Leung, P J Y</creator><creator>Huddy, T F</creator><creator>Pellock, S</creator><creator>Tischer, D</creator><creator>Chan, F</creator><creator>Koepnick, B</creator><creator>Nguyen, H</creator><creator>Kang, A</creator><creator>Sankaran, B</creator><creator>Bera, A K</creator><creator>King, N P</creator><creator>Baker, D</creator><general>The American Association for the Advancement of Science</general><general>AAAS</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8590-1454</orcidid><orcidid>https://orcid.org/0000-0003-3645-2044</orcidid><orcidid>https://orcid.org/0000-0001-7576-9613</orcidid><orcidid>https://orcid.org/0000-0002-1801-8968</orcidid><orcidid>https://orcid.org/0000-0001-9473-2912</orcidid><orcidid>https://orcid.org/0000-0001-7896-6217</orcidid><orcidid>https://orcid.org/0000-0002-0030-144X</orcidid><orcidid>https://orcid.org/0000-0002-2501-7875</orcidid><orcidid>https://orcid.org/0000-0001-9696-4004</orcidid><orcidid>https://orcid.org/0000-0001-5487-0499</orcidid><orcidid>https://orcid.org/0000-0003-3633-5542</orcidid><orcidid>https://orcid.org/0000-0003-0539-7011</orcidid><orcidid>https://orcid.org/0000-0002-0448-4052</orcidid><orcidid>https://orcid.org/0000-0001-8417-3205</orcidid><orcidid>https://orcid.org/0000-0002-3266-8131</orcidid><orcidid>https://orcid.org/0000-0001-5168-8579</orcidid><orcidid>https://orcid.org/0000-0002-2978-4692</orcidid><orcidid>https://orcid.org/0000-0002-6463-1595</orcidid><orcidid>https://orcid.org/0000-0002-7587-9967</orcidid><orcidid>https://orcid.org/0000-0002-5455-416X</orcidid><orcidid>https://orcid.org/0000000194732912</orcidid><orcidid>https://orcid.org/0000000232668131</orcidid><orcidid>https://orcid.org/0000000264631595</orcidid><orcidid>https://orcid.org/000000025455416X</orcidid><orcidid>https://orcid.org/0000000336335542</orcidid><orcidid>https://orcid.org/0000000184173205</orcidid><orcidid>https://orcid.org/0000000178966217</orcidid><orcidid>https://orcid.org/0000000275879967</orcidid><orcidid>https://orcid.org/0000000151688579</orcidid><orcidid>https://orcid.org/0000000175769613</orcidid><orcidid>https://orcid.org/0000000185901454</orcidid><orcidid>https://orcid.org/0000000154870499</orcidid><orcidid>https://orcid.org/000000020030144X</orcidid><orcidid>https://orcid.org/0000000225017875</orcidid><orcidid>https://orcid.org/0000000305397011</orcidid><orcidid>https://orcid.org/0000000336452044</orcidid><orcidid>https://orcid.org/0000000229784692</orcidid><orcidid>https://orcid.org/0000000204484052</orcidid><orcidid>https://orcid.org/0000000196964004</orcidid></search><sort><creationdate>20221007</creationdate><title>Robust deep learning-based protein sequence design using ProteinMPNN</title><author>Dauparas, J ; Anishchenko, I ; Bennett, N ; Bai, H ; Ragotte, R J ; Milles, L F ; Wicky, B I M ; Courbet, A ; de Haas, R J ; Bethel, N ; Leung, P J Y ; Huddy, T F ; Pellock, S ; Tischer, D ; Chan, F ; Koepnick, B ; Nguyen, H ; Kang, A ; Sankaran, B ; Bera, A K ; King, N P ; Baker, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-ac6418abe76a768d7bb5a07f69da8d4b1a096693a3e6db37a82376865865fac83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino Acid Sequence</topic><topic>Cryoelectron Microscopy</topic><topic>Crystallography, X-Ray</topic><topic>Cyclic oligomers</topic><topic>Deep Learning</topic><topic>Design</topic><topic>Inverse problems</topic><topic>Oligomers</topic><topic>Optimization</topic><topic>Protein Conformation</topic><topic>Protein Engineering - methods</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Science & Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dauparas, J</creatorcontrib><creatorcontrib>Anishchenko, I</creatorcontrib><creatorcontrib>Bennett, N</creatorcontrib><creatorcontrib>Bai, H</creatorcontrib><creatorcontrib>Ragotte, R J</creatorcontrib><creatorcontrib>Milles, L F</creatorcontrib><creatorcontrib>Wicky, B I M</creatorcontrib><creatorcontrib>Courbet, A</creatorcontrib><creatorcontrib>de Haas, R J</creatorcontrib><creatorcontrib>Bethel, N</creatorcontrib><creatorcontrib>Leung, P J Y</creatorcontrib><creatorcontrib>Huddy, T F</creatorcontrib><creatorcontrib>Pellock, S</creatorcontrib><creatorcontrib>Tischer, D</creatorcontrib><creatorcontrib>Chan, F</creatorcontrib><creatorcontrib>Koepnick, B</creatorcontrib><creatorcontrib>Nguyen, H</creatorcontrib><creatorcontrib>Kang, A</creatorcontrib><creatorcontrib>Sankaran, B</creatorcontrib><creatorcontrib>Bera, A K</creatorcontrib><creatorcontrib>King, N P</creatorcontrib><creatorcontrib>Baker, D</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dauparas, J</au><au>Anishchenko, I</au><au>Bennett, N</au><au>Bai, H</au><au>Ragotte, R J</au><au>Milles, L F</au><au>Wicky, B I M</au><au>Courbet, A</au><au>de Haas, R J</au><au>Bethel, N</au><au>Leung, P J Y</au><au>Huddy, T F</au><au>Pellock, S</au><au>Tischer, D</au><au>Chan, F</au><au>Koepnick, B</au><au>Nguyen, H</au><au>Kang, A</au><au>Sankaran, B</au><au>Bera, A K</au><au>King, N P</au><au>Baker, D</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust deep learning-based protein sequence design using ProteinMPNN</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2022-10-07</date><risdate>2022</risdate><volume>378</volume><issue>6615</issue><spage>49</spage><epage>56</epage><pages>49-56</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Although deep learning has revolutionized protein structure prediction, almost all experimentally characterized de novo protein designs have been generated using physically based approaches such as Rosetta. Here, we describe a deep learning-based protein sequence design method, ProteinMPNN, that has outstanding performance in both in silico and experimental tests. On native protein backbones, ProteinMPNN has a sequence recovery of 52.4% compared with 32.9% for Rosetta. The amino acid sequence at different positions can be coupled between single or multiple chains, enabling application to a wide range of current protein design challenges. We demonstrate the broad utility and high accuracy of ProteinMPNN using x-ray crystallography, cryo-electron microscopy, and functional studies by rescuing previously failed designs, which were made using Rosetta or AlphaFold, of protein monomers, cyclic homo-oligomers, tetrahedral nanoparticles, and target-binding proteins.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>36108050</pmid><doi>10.1126/science.add2187</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8590-1454</orcidid><orcidid>https://orcid.org/0000-0003-3645-2044</orcidid><orcidid>https://orcid.org/0000-0001-7576-9613</orcidid><orcidid>https://orcid.org/0000-0002-1801-8968</orcidid><orcidid>https://orcid.org/0000-0001-9473-2912</orcidid><orcidid>https://orcid.org/0000-0001-7896-6217</orcidid><orcidid>https://orcid.org/0000-0002-0030-144X</orcidid><orcidid>https://orcid.org/0000-0002-2501-7875</orcidid><orcidid>https://orcid.org/0000-0001-9696-4004</orcidid><orcidid>https://orcid.org/0000-0001-5487-0499</orcidid><orcidid>https://orcid.org/0000-0003-3633-5542</orcidid><orcidid>https://orcid.org/0000-0003-0539-7011</orcidid><orcidid>https://orcid.org/0000-0002-0448-4052</orcidid><orcidid>https://orcid.org/0000-0001-8417-3205</orcidid><orcidid>https://orcid.org/0000-0002-3266-8131</orcidid><orcidid>https://orcid.org/0000-0001-5168-8579</orcidid><orcidid>https://orcid.org/0000-0002-2978-4692</orcidid><orcidid>https://orcid.org/0000-0002-6463-1595</orcidid><orcidid>https://orcid.org/0000-0002-7587-9967</orcidid><orcidid>https://orcid.org/0000-0002-5455-416X</orcidid><orcidid>https://orcid.org/0000000194732912</orcidid><orcidid>https://orcid.org/0000000232668131</orcidid><orcidid>https://orcid.org/0000000264631595</orcidid><orcidid>https://orcid.org/000000025455416X</orcidid><orcidid>https://orcid.org/0000000336335542</orcidid><orcidid>https://orcid.org/0000000184173205</orcidid><orcidid>https://orcid.org/0000000178966217</orcidid><orcidid>https://orcid.org/0000000275879967</orcidid><orcidid>https://orcid.org/0000000151688579</orcidid><orcidid>https://orcid.org/0000000175769613</orcidid><orcidid>https://orcid.org/0000000185901454</orcidid><orcidid>https://orcid.org/0000000154870499</orcidid><orcidid>https://orcid.org/000000020030144X</orcidid><orcidid>https://orcid.org/0000000225017875</orcidid><orcidid>https://orcid.org/0000000305397011</orcidid><orcidid>https://orcid.org/0000000336452044</orcidid><orcidid>https://orcid.org/0000000229784692</orcidid><orcidid>https://orcid.org/0000000204484052</orcidid><orcidid>https://orcid.org/0000000196964004</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2022-10, Vol.378 (6615), p.49-56 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9997061 |
source | American Association for the Advancement of Science; MEDLINE |
subjects | Amino Acid Sequence Cryoelectron Microscopy Crystallography, X-Ray Cyclic oligomers Deep Learning Design Inverse problems Oligomers Optimization Protein Conformation Protein Engineering - methods Protein structure Proteins Proteins - chemistry Science & Technology - Other Topics |
title | Robust deep learning-based protein sequence design using ProteinMPNN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20deep%20learning-based%20protein%20sequence%20design%20using%20ProteinMPNN&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Dauparas,%20J&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2022-10-07&rft.volume=378&rft.issue=6615&rft.spage=49&rft.epage=56&rft.pages=49-56&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.add2187&rft_dat=%3Cproquest_pubme%3E2715442089%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2722475533&rft_id=info:pmid/36108050&rfr_iscdi=true |