Robust deep learning-based protein sequence design using ProteinMPNN

Although deep learning has revolutionized protein structure prediction, almost all experimentally characterized de novo protein designs have been generated using physically based approaches such as Rosetta. Here, we describe a deep learning-based protein sequence design method, ProteinMPNN, that has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2022-10, Vol.378 (6615), p.49-56
Hauptverfasser: Dauparas, J, Anishchenko, I, Bennett, N, Bai, H, Ragotte, R J, Milles, L F, Wicky, B I M, Courbet, A, de Haas, R J, Bethel, N, Leung, P J Y, Huddy, T F, Pellock, S, Tischer, D, Chan, F, Koepnick, B, Nguyen, H, Kang, A, Sankaran, B, Bera, A K, King, N P, Baker, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue 6615
container_start_page 49
container_title Science (American Association for the Advancement of Science)
container_volume 378
creator Dauparas, J
Anishchenko, I
Bennett, N
Bai, H
Ragotte, R J
Milles, L F
Wicky, B I M
Courbet, A
de Haas, R J
Bethel, N
Leung, P J Y
Huddy, T F
Pellock, S
Tischer, D
Chan, F
Koepnick, B
Nguyen, H
Kang, A
Sankaran, B
Bera, A K
King, N P
Baker, D
description Although deep learning has revolutionized protein structure prediction, almost all experimentally characterized de novo protein designs have been generated using physically based approaches such as Rosetta. Here, we describe a deep learning-based protein sequence design method, ProteinMPNN, that has outstanding performance in both in silico and experimental tests. On native protein backbones, ProteinMPNN has a sequence recovery of 52.4% compared with 32.9% for Rosetta. The amino acid sequence at different positions can be coupled between single or multiple chains, enabling application to a wide range of current protein design challenges. We demonstrate the broad utility and high accuracy of ProteinMPNN using x-ray crystallography, cryo-electron microscopy, and functional studies by rescuing previously failed designs, which were made using Rosetta or AlphaFold, of protein monomers, cyclic homo-oligomers, tetrahedral nanoparticles, and target-binding proteins.
doi_str_mv 10.1126/science.add2187
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9997061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2715442089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-ac6418abe76a768d7bb5a07f69da8d4b1a096693a3e6db37a82376865865fac83</originalsourceid><addsrcrecordid>eNpdkd1LHDEUxYO06FZ99q0M9aUvozeTyddLQewnWJXSPodMcneNzCZrMlPof98su5W2EMjD-eWc3HsIOaNwQWknLosLGB1eWO87quQBWVDQvNUdsBdkAcBEq0DyI_KqlEeAqml2SI6YoKCAw4K8_5aGuUyNR9w0I9ocQ1y1gy3om01OE4bYFHyatykVKmEVm7lUprnfqV_vb29PyMulHQue7u9j8uPjh-_Xn9ubu09frq9uWsdpP7XWiZ4qO6AUVgrl5TBwC3IptLfK9wO1oIXQzDIUfmDSqo5VTvB6ltYpdkze7Xw387BG7zBO2Y5mk8Pa5l8m2WD-VWJ4MKv002itJQhaDd7sDFKZgqnLm9A9uBQjusl0fWVgm_J2n5JTHbxMZh2Kw3G0EdNcTCcp7_sOlK7o-X_oY5pzrDuoVFcNOWesUpc7yuVUSsbl848pmG2NZl-j2ddYX7z-e9Bn_k9v7DeBX5rn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722475533</pqid></control><display><type>article</type><title>Robust deep learning-based protein sequence design using ProteinMPNN</title><source>American Association for the Advancement of Science</source><source>MEDLINE</source><creator>Dauparas, J ; Anishchenko, I ; Bennett, N ; Bai, H ; Ragotte, R J ; Milles, L F ; Wicky, B I M ; Courbet, A ; de Haas, R J ; Bethel, N ; Leung, P J Y ; Huddy, T F ; Pellock, S ; Tischer, D ; Chan, F ; Koepnick, B ; Nguyen, H ; Kang, A ; Sankaran, B ; Bera, A K ; King, N P ; Baker, D</creator><creatorcontrib>Dauparas, J ; Anishchenko, I ; Bennett, N ; Bai, H ; Ragotte, R J ; Milles, L F ; Wicky, B I M ; Courbet, A ; de Haas, R J ; Bethel, N ; Leung, P J Y ; Huddy, T F ; Pellock, S ; Tischer, D ; Chan, F ; Koepnick, B ; Nguyen, H ; Kang, A ; Sankaran, B ; Bera, A K ; King, N P ; Baker, D ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Although deep learning has revolutionized protein structure prediction, almost all experimentally characterized de novo protein designs have been generated using physically based approaches such as Rosetta. Here, we describe a deep learning-based protein sequence design method, ProteinMPNN, that has outstanding performance in both in silico and experimental tests. On native protein backbones, ProteinMPNN has a sequence recovery of 52.4% compared with 32.9% for Rosetta. The amino acid sequence at different positions can be coupled between single or multiple chains, enabling application to a wide range of current protein design challenges. We demonstrate the broad utility and high accuracy of ProteinMPNN using x-ray crystallography, cryo-electron microscopy, and functional studies by rescuing previously failed designs, which were made using Rosetta or AlphaFold, of protein monomers, cyclic homo-oligomers, tetrahedral nanoparticles, and target-binding proteins.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.add2187</identifier><identifier>PMID: 36108050</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Amino Acid Sequence ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Cyclic oligomers ; Deep Learning ; Design ; Inverse problems ; Oligomers ; Optimization ; Protein Conformation ; Protein Engineering - methods ; Protein structure ; Proteins ; Proteins - chemistry ; Science &amp; Technology - Other Topics</subject><ispartof>Science (American Association for the Advancement of Science), 2022-10, Vol.378 (6615), p.49-56</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-ac6418abe76a768d7bb5a07f69da8d4b1a096693a3e6db37a82376865865fac83</citedby><cites>FETCH-LOGICAL-c514t-ac6418abe76a768d7bb5a07f69da8d4b1a096693a3e6db37a82376865865fac83</cites><orcidid>0000-0001-8590-1454 ; 0000-0003-3645-2044 ; 0000-0001-7576-9613 ; 0000-0002-1801-8968 ; 0000-0001-9473-2912 ; 0000-0001-7896-6217 ; 0000-0002-0030-144X ; 0000-0002-2501-7875 ; 0000-0001-9696-4004 ; 0000-0001-5487-0499 ; 0000-0003-3633-5542 ; 0000-0003-0539-7011 ; 0000-0002-0448-4052 ; 0000-0001-8417-3205 ; 0000-0002-3266-8131 ; 0000-0001-5168-8579 ; 0000-0002-2978-4692 ; 0000-0002-6463-1595 ; 0000-0002-7587-9967 ; 0000-0002-5455-416X ; 0000000194732912 ; 0000000232668131 ; 0000000264631595 ; 000000025455416X ; 0000000336335542 ; 0000000184173205 ; 0000000178966217 ; 0000000275879967 ; 0000000151688579 ; 0000000175769613 ; 0000000185901454 ; 0000000154870499 ; 000000020030144X ; 0000000225017875 ; 0000000305397011 ; 0000000336452044 ; 0000000229784692 ; 0000000204484052 ; 0000000196964004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36108050$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2470608$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dauparas, J</creatorcontrib><creatorcontrib>Anishchenko, I</creatorcontrib><creatorcontrib>Bennett, N</creatorcontrib><creatorcontrib>Bai, H</creatorcontrib><creatorcontrib>Ragotte, R J</creatorcontrib><creatorcontrib>Milles, L F</creatorcontrib><creatorcontrib>Wicky, B I M</creatorcontrib><creatorcontrib>Courbet, A</creatorcontrib><creatorcontrib>de Haas, R J</creatorcontrib><creatorcontrib>Bethel, N</creatorcontrib><creatorcontrib>Leung, P J Y</creatorcontrib><creatorcontrib>Huddy, T F</creatorcontrib><creatorcontrib>Pellock, S</creatorcontrib><creatorcontrib>Tischer, D</creatorcontrib><creatorcontrib>Chan, F</creatorcontrib><creatorcontrib>Koepnick, B</creatorcontrib><creatorcontrib>Nguyen, H</creatorcontrib><creatorcontrib>Kang, A</creatorcontrib><creatorcontrib>Sankaran, B</creatorcontrib><creatorcontrib>Bera, A K</creatorcontrib><creatorcontrib>King, N P</creatorcontrib><creatorcontrib>Baker, D</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Robust deep learning-based protein sequence design using ProteinMPNN</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Although deep learning has revolutionized protein structure prediction, almost all experimentally characterized de novo protein designs have been generated using physically based approaches such as Rosetta. Here, we describe a deep learning-based protein sequence design method, ProteinMPNN, that has outstanding performance in both in silico and experimental tests. On native protein backbones, ProteinMPNN has a sequence recovery of 52.4% compared with 32.9% for Rosetta. The amino acid sequence at different positions can be coupled between single or multiple chains, enabling application to a wide range of current protein design challenges. We demonstrate the broad utility and high accuracy of ProteinMPNN using x-ray crystallography, cryo-electron microscopy, and functional studies by rescuing previously failed designs, which were made using Rosetta or AlphaFold, of protein monomers, cyclic homo-oligomers, tetrahedral nanoparticles, and target-binding proteins.</description><subject>Amino Acid Sequence</subject><subject>Cryoelectron Microscopy</subject><subject>Crystallography, X-Ray</subject><subject>Cyclic oligomers</subject><subject>Deep Learning</subject><subject>Design</subject><subject>Inverse problems</subject><subject>Oligomers</subject><subject>Optimization</subject><subject>Protein Conformation</subject><subject>Protein Engineering - methods</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Science &amp; Technology - Other Topics</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkd1LHDEUxYO06FZ99q0M9aUvozeTyddLQewnWJXSPodMcneNzCZrMlPof98su5W2EMjD-eWc3HsIOaNwQWknLosLGB1eWO87quQBWVDQvNUdsBdkAcBEq0DyI_KqlEeAqml2SI6YoKCAw4K8_5aGuUyNR9w0I9ocQ1y1gy3om01OE4bYFHyatykVKmEVm7lUprnfqV_vb29PyMulHQue7u9j8uPjh-_Xn9ubu09frq9uWsdpP7XWiZ4qO6AUVgrl5TBwC3IptLfK9wO1oIXQzDIUfmDSqo5VTvB6ltYpdkze7Xw387BG7zBO2Y5mk8Pa5l8m2WD-VWJ4MKv002itJQhaDd7sDFKZgqnLm9A9uBQjusl0fWVgm_J2n5JTHbxMZh2Kw3G0EdNcTCcp7_sOlK7o-X_oY5pzrDuoVFcNOWesUpc7yuVUSsbl848pmG2NZl-j2ddYX7z-e9Bn_k9v7DeBX5rn</recordid><startdate>20221007</startdate><enddate>20221007</enddate><creator>Dauparas, J</creator><creator>Anishchenko, I</creator><creator>Bennett, N</creator><creator>Bai, H</creator><creator>Ragotte, R J</creator><creator>Milles, L F</creator><creator>Wicky, B I M</creator><creator>Courbet, A</creator><creator>de Haas, R J</creator><creator>Bethel, N</creator><creator>Leung, P J Y</creator><creator>Huddy, T F</creator><creator>Pellock, S</creator><creator>Tischer, D</creator><creator>Chan, F</creator><creator>Koepnick, B</creator><creator>Nguyen, H</creator><creator>Kang, A</creator><creator>Sankaran, B</creator><creator>Bera, A K</creator><creator>King, N P</creator><creator>Baker, D</creator><general>The American Association for the Advancement of Science</general><general>AAAS</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8590-1454</orcidid><orcidid>https://orcid.org/0000-0003-3645-2044</orcidid><orcidid>https://orcid.org/0000-0001-7576-9613</orcidid><orcidid>https://orcid.org/0000-0002-1801-8968</orcidid><orcidid>https://orcid.org/0000-0001-9473-2912</orcidid><orcidid>https://orcid.org/0000-0001-7896-6217</orcidid><orcidid>https://orcid.org/0000-0002-0030-144X</orcidid><orcidid>https://orcid.org/0000-0002-2501-7875</orcidid><orcidid>https://orcid.org/0000-0001-9696-4004</orcidid><orcidid>https://orcid.org/0000-0001-5487-0499</orcidid><orcidid>https://orcid.org/0000-0003-3633-5542</orcidid><orcidid>https://orcid.org/0000-0003-0539-7011</orcidid><orcidid>https://orcid.org/0000-0002-0448-4052</orcidid><orcidid>https://orcid.org/0000-0001-8417-3205</orcidid><orcidid>https://orcid.org/0000-0002-3266-8131</orcidid><orcidid>https://orcid.org/0000-0001-5168-8579</orcidid><orcidid>https://orcid.org/0000-0002-2978-4692</orcidid><orcidid>https://orcid.org/0000-0002-6463-1595</orcidid><orcidid>https://orcid.org/0000-0002-7587-9967</orcidid><orcidid>https://orcid.org/0000-0002-5455-416X</orcidid><orcidid>https://orcid.org/0000000194732912</orcidid><orcidid>https://orcid.org/0000000232668131</orcidid><orcidid>https://orcid.org/0000000264631595</orcidid><orcidid>https://orcid.org/000000025455416X</orcidid><orcidid>https://orcid.org/0000000336335542</orcidid><orcidid>https://orcid.org/0000000184173205</orcidid><orcidid>https://orcid.org/0000000178966217</orcidid><orcidid>https://orcid.org/0000000275879967</orcidid><orcidid>https://orcid.org/0000000151688579</orcidid><orcidid>https://orcid.org/0000000175769613</orcidid><orcidid>https://orcid.org/0000000185901454</orcidid><orcidid>https://orcid.org/0000000154870499</orcidid><orcidid>https://orcid.org/000000020030144X</orcidid><orcidid>https://orcid.org/0000000225017875</orcidid><orcidid>https://orcid.org/0000000305397011</orcidid><orcidid>https://orcid.org/0000000336452044</orcidid><orcidid>https://orcid.org/0000000229784692</orcidid><orcidid>https://orcid.org/0000000204484052</orcidid><orcidid>https://orcid.org/0000000196964004</orcidid></search><sort><creationdate>20221007</creationdate><title>Robust deep learning-based protein sequence design using ProteinMPNN</title><author>Dauparas, J ; Anishchenko, I ; Bennett, N ; Bai, H ; Ragotte, R J ; Milles, L F ; Wicky, B I M ; Courbet, A ; de Haas, R J ; Bethel, N ; Leung, P J Y ; Huddy, T F ; Pellock, S ; Tischer, D ; Chan, F ; Koepnick, B ; Nguyen, H ; Kang, A ; Sankaran, B ; Bera, A K ; King, N P ; Baker, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-ac6418abe76a768d7bb5a07f69da8d4b1a096693a3e6db37a82376865865fac83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino Acid Sequence</topic><topic>Cryoelectron Microscopy</topic><topic>Crystallography, X-Ray</topic><topic>Cyclic oligomers</topic><topic>Deep Learning</topic><topic>Design</topic><topic>Inverse problems</topic><topic>Oligomers</topic><topic>Optimization</topic><topic>Protein Conformation</topic><topic>Protein Engineering - methods</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Science &amp; Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dauparas, J</creatorcontrib><creatorcontrib>Anishchenko, I</creatorcontrib><creatorcontrib>Bennett, N</creatorcontrib><creatorcontrib>Bai, H</creatorcontrib><creatorcontrib>Ragotte, R J</creatorcontrib><creatorcontrib>Milles, L F</creatorcontrib><creatorcontrib>Wicky, B I M</creatorcontrib><creatorcontrib>Courbet, A</creatorcontrib><creatorcontrib>de Haas, R J</creatorcontrib><creatorcontrib>Bethel, N</creatorcontrib><creatorcontrib>Leung, P J Y</creatorcontrib><creatorcontrib>Huddy, T F</creatorcontrib><creatorcontrib>Pellock, S</creatorcontrib><creatorcontrib>Tischer, D</creatorcontrib><creatorcontrib>Chan, F</creatorcontrib><creatorcontrib>Koepnick, B</creatorcontrib><creatorcontrib>Nguyen, H</creatorcontrib><creatorcontrib>Kang, A</creatorcontrib><creatorcontrib>Sankaran, B</creatorcontrib><creatorcontrib>Bera, A K</creatorcontrib><creatorcontrib>King, N P</creatorcontrib><creatorcontrib>Baker, D</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dauparas, J</au><au>Anishchenko, I</au><au>Bennett, N</au><au>Bai, H</au><au>Ragotte, R J</au><au>Milles, L F</au><au>Wicky, B I M</au><au>Courbet, A</au><au>de Haas, R J</au><au>Bethel, N</au><au>Leung, P J Y</au><au>Huddy, T F</au><au>Pellock, S</au><au>Tischer, D</au><au>Chan, F</au><au>Koepnick, B</au><au>Nguyen, H</au><au>Kang, A</au><au>Sankaran, B</au><au>Bera, A K</au><au>King, N P</au><au>Baker, D</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust deep learning-based protein sequence design using ProteinMPNN</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2022-10-07</date><risdate>2022</risdate><volume>378</volume><issue>6615</issue><spage>49</spage><epage>56</epage><pages>49-56</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Although deep learning has revolutionized protein structure prediction, almost all experimentally characterized de novo protein designs have been generated using physically based approaches such as Rosetta. Here, we describe a deep learning-based protein sequence design method, ProteinMPNN, that has outstanding performance in both in silico and experimental tests. On native protein backbones, ProteinMPNN has a sequence recovery of 52.4% compared with 32.9% for Rosetta. The amino acid sequence at different positions can be coupled between single or multiple chains, enabling application to a wide range of current protein design challenges. We demonstrate the broad utility and high accuracy of ProteinMPNN using x-ray crystallography, cryo-electron microscopy, and functional studies by rescuing previously failed designs, which were made using Rosetta or AlphaFold, of protein monomers, cyclic homo-oligomers, tetrahedral nanoparticles, and target-binding proteins.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>36108050</pmid><doi>10.1126/science.add2187</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8590-1454</orcidid><orcidid>https://orcid.org/0000-0003-3645-2044</orcidid><orcidid>https://orcid.org/0000-0001-7576-9613</orcidid><orcidid>https://orcid.org/0000-0002-1801-8968</orcidid><orcidid>https://orcid.org/0000-0001-9473-2912</orcidid><orcidid>https://orcid.org/0000-0001-7896-6217</orcidid><orcidid>https://orcid.org/0000-0002-0030-144X</orcidid><orcidid>https://orcid.org/0000-0002-2501-7875</orcidid><orcidid>https://orcid.org/0000-0001-9696-4004</orcidid><orcidid>https://orcid.org/0000-0001-5487-0499</orcidid><orcidid>https://orcid.org/0000-0003-3633-5542</orcidid><orcidid>https://orcid.org/0000-0003-0539-7011</orcidid><orcidid>https://orcid.org/0000-0002-0448-4052</orcidid><orcidid>https://orcid.org/0000-0001-8417-3205</orcidid><orcidid>https://orcid.org/0000-0002-3266-8131</orcidid><orcidid>https://orcid.org/0000-0001-5168-8579</orcidid><orcidid>https://orcid.org/0000-0002-2978-4692</orcidid><orcidid>https://orcid.org/0000-0002-6463-1595</orcidid><orcidid>https://orcid.org/0000-0002-7587-9967</orcidid><orcidid>https://orcid.org/0000-0002-5455-416X</orcidid><orcidid>https://orcid.org/0000000194732912</orcidid><orcidid>https://orcid.org/0000000232668131</orcidid><orcidid>https://orcid.org/0000000264631595</orcidid><orcidid>https://orcid.org/000000025455416X</orcidid><orcidid>https://orcid.org/0000000336335542</orcidid><orcidid>https://orcid.org/0000000184173205</orcidid><orcidid>https://orcid.org/0000000178966217</orcidid><orcidid>https://orcid.org/0000000275879967</orcidid><orcidid>https://orcid.org/0000000151688579</orcidid><orcidid>https://orcid.org/0000000175769613</orcidid><orcidid>https://orcid.org/0000000185901454</orcidid><orcidid>https://orcid.org/0000000154870499</orcidid><orcidid>https://orcid.org/000000020030144X</orcidid><orcidid>https://orcid.org/0000000225017875</orcidid><orcidid>https://orcid.org/0000000305397011</orcidid><orcidid>https://orcid.org/0000000336452044</orcidid><orcidid>https://orcid.org/0000000229784692</orcidid><orcidid>https://orcid.org/0000000204484052</orcidid><orcidid>https://orcid.org/0000000196964004</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2022-10, Vol.378 (6615), p.49-56
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9997061
source American Association for the Advancement of Science; MEDLINE
subjects Amino Acid Sequence
Cryoelectron Microscopy
Crystallography, X-Ray
Cyclic oligomers
Deep Learning
Design
Inverse problems
Oligomers
Optimization
Protein Conformation
Protein Engineering - methods
Protein structure
Proteins
Proteins - chemistry
Science & Technology - Other Topics
title Robust deep learning-based protein sequence design using ProteinMPNN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20deep%20learning-based%20protein%20sequence%20design%20using%20ProteinMPNN&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Dauparas,%20J&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2022-10-07&rft.volume=378&rft.issue=6615&rft.spage=49&rft.epage=56&rft.pages=49-56&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.add2187&rft_dat=%3Cproquest_pubme%3E2715442089%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2722475533&rft_id=info:pmid/36108050&rfr_iscdi=true