Integrating comparative modeling and accelerated simulations reveals conformational and energetic basis of actomyosin force generation

Muscle contraction is performed by arrays of contractile proteins in the sarcomere. Serious heart diseases, such as cardiomyopathy, can often be results of mutations in myosin and actin. Direct characterization of how small changes in the myosin-actin complex impact its force production remains chal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2023-02, Vol.120 (9), p.e2215836120-e2215836120
Hauptverfasser: Ma, Wen, You, Shengjun, Regnier, Michael, McCammon, J Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2215836120
container_issue 9
container_start_page e2215836120
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 120
creator Ma, Wen
You, Shengjun
Regnier, Michael
McCammon, J Andrew
description Muscle contraction is performed by arrays of contractile proteins in the sarcomere. Serious heart diseases, such as cardiomyopathy, can often be results of mutations in myosin and actin. Direct characterization of how small changes in the myosin-actin complex impact its force production remains challenging. Molecular dynamics (MD) simulations, although capable of studying protein structure-function relationships, are limited owing to the slow timescale of the myosin cycle as well as a lack of various intermediate structures for the actomyosin complex. Here, employing comparative modeling and enhanced sampling MD simulations, we show how the human cardiac myosin generates force during the mechanochemical cycle. Initial conformational ensembles for different myosin-actin states are learned from multiple structural templates with Rosetta. This enables us to efficiently sample the energy landscape of the system using Gaussian accelerated MD. Key myosin loop residues, whose substitutions are related to cardiomyopathy, are identified to form stable or metastable interactions with the actin surface. We find that the actin-binding cleft closure is allosterically coupled to the myosin motor core transitions and ATP-hydrolysis product release from the active site. Furthermore, a gate between switch I and switch II is suggested to control phosphate release at the prepowerstroke state. Our approach demonstrates the ability to link sequence and structural information to motor functions.
doi_str_mv 10.1073/pnas.2215836120
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9992861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2778979072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-55ca2cf739e04c2cb7314e91fbd7d3fff5ab40af88799f0c19a74bbad8ee7c5b3</originalsourceid><addsrcrecordid>eNpdkUtv1TAQhS0EopfCmh2yxKabtH7l2t4goYrSSpXYwNpynHFwldgXO7lS_0B_N85t6YPVjGa-c2TPQegjJaeUSH62i7acMkZbxbeUkVdoQ4mmzVZo8hptCGGyUYKJI_SulBtCiG4VeYuO-FYRJqjcoLurOMOQ7RzigF2adnbt94Cn1MO4Dm3ssXUORqgb6HEJ0zJWJsWCM-zBjqUKo095OkzteJBAhDzAHBzubAkFJ19d5jTdphIirrQDPKzQQfQevfHVCD481GP06-Lbz_PL5vrH96vzr9eNE4zOTds6y5yXXAMRjrlOcipAU9_1sufe-9Z2glivlNTaE0e1laLrbK8ApGs7foy-3Pvulm6C3kGcsx3NLofJ5luTbDAvNzH8NkPaG601U1taDU4eDHL6s0CZzRRKPc5oI6SlGCal0lITySr6-T_0Ji253mellBBcSLIant1TLqdSMvjHx1Bi1ozNmrF5yrgqPj3_wyP_L1T-FwzRqKE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784434701</pqid></control><display><type>article</type><title>Integrating comparative modeling and accelerated simulations reveals conformational and energetic basis of actomyosin force generation</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ma, Wen ; You, Shengjun ; Regnier, Michael ; McCammon, J Andrew</creator><creatorcontrib>Ma, Wen ; You, Shengjun ; Regnier, Michael ; McCammon, J Andrew</creatorcontrib><description>Muscle contraction is performed by arrays of contractile proteins in the sarcomere. Serious heart diseases, such as cardiomyopathy, can often be results of mutations in myosin and actin. Direct characterization of how small changes in the myosin-actin complex impact its force production remains challenging. Molecular dynamics (MD) simulations, although capable of studying protein structure-function relationships, are limited owing to the slow timescale of the myosin cycle as well as a lack of various intermediate structures for the actomyosin complex. Here, employing comparative modeling and enhanced sampling MD simulations, we show how the human cardiac myosin generates force during the mechanochemical cycle. Initial conformational ensembles for different myosin-actin states are learned from multiple structural templates with Rosetta. This enables us to efficiently sample the energy landscape of the system using Gaussian accelerated MD. Key myosin loop residues, whose substitutions are related to cardiomyopathy, are identified to form stable or metastable interactions with the actin surface. We find that the actin-binding cleft closure is allosterically coupled to the myosin motor core transitions and ATP-hydrolysis product release from the active site. Furthermore, a gate between switch I and switch II is suggested to control phosphate release at the prepowerstroke state. Our approach demonstrates the ability to link sequence and structural information to motor functions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2215836120</identifier><identifier>PMID: 36802417</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Actin ; Actin Cytoskeleton - metabolism ; Actins - metabolism ; Actomyosin ; Actomyosin - metabolism ; Adenosine Triphosphate - metabolism ; Biological Sciences ; Cardiomyopathy ; Cardiovascular diseases ; Dynamic structural analysis ; Heart diseases ; Humans ; Modelling ; Molecular dynamics ; Muscle contraction ; Muscular function ; Mutation ; Myosin ; Myosins - metabolism ; Physical Sciences ; Protein Conformation ; Protein structure ; Proteins ; Simulation ; Structure-function relationships</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-02, Vol.120 (9), p.e2215836120-e2215836120</ispartof><rights>Copyright National Academy of Sciences Feb 28, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-55ca2cf739e04c2cb7314e91fbd7d3fff5ab40af88799f0c19a74bbad8ee7c5b3</citedby><cites>FETCH-LOGICAL-c421t-55ca2cf739e04c2cb7314e91fbd7d3fff5ab40af88799f0c19a74bbad8ee7c5b3</cites><orcidid>0000-0001-5437-9851 ; 0000-0003-3065-1456 ; 0000-0002-1123-5273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992861/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992861/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36802417$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Wen</creatorcontrib><creatorcontrib>You, Shengjun</creatorcontrib><creatorcontrib>Regnier, Michael</creatorcontrib><creatorcontrib>McCammon, J Andrew</creatorcontrib><title>Integrating comparative modeling and accelerated simulations reveals conformational and energetic basis of actomyosin force generation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Muscle contraction is performed by arrays of contractile proteins in the sarcomere. Serious heart diseases, such as cardiomyopathy, can often be results of mutations in myosin and actin. Direct characterization of how small changes in the myosin-actin complex impact its force production remains challenging. Molecular dynamics (MD) simulations, although capable of studying protein structure-function relationships, are limited owing to the slow timescale of the myosin cycle as well as a lack of various intermediate structures for the actomyosin complex. Here, employing comparative modeling and enhanced sampling MD simulations, we show how the human cardiac myosin generates force during the mechanochemical cycle. Initial conformational ensembles for different myosin-actin states are learned from multiple structural templates with Rosetta. This enables us to efficiently sample the energy landscape of the system using Gaussian accelerated MD. Key myosin loop residues, whose substitutions are related to cardiomyopathy, are identified to form stable or metastable interactions with the actin surface. We find that the actin-binding cleft closure is allosterically coupled to the myosin motor core transitions and ATP-hydrolysis product release from the active site. Furthermore, a gate between switch I and switch II is suggested to control phosphate release at the prepowerstroke state. Our approach demonstrates the ability to link sequence and structural information to motor functions.</description><subject>Actin</subject><subject>Actin Cytoskeleton - metabolism</subject><subject>Actins - metabolism</subject><subject>Actomyosin</subject><subject>Actomyosin - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Biological Sciences</subject><subject>Cardiomyopathy</subject><subject>Cardiovascular diseases</subject><subject>Dynamic structural analysis</subject><subject>Heart diseases</subject><subject>Humans</subject><subject>Modelling</subject><subject>Molecular dynamics</subject><subject>Muscle contraction</subject><subject>Muscular function</subject><subject>Mutation</subject><subject>Myosin</subject><subject>Myosins - metabolism</subject><subject>Physical Sciences</subject><subject>Protein Conformation</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Simulation</subject><subject>Structure-function relationships</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtv1TAQhS0EopfCmh2yxKabtH7l2t4goYrSSpXYwNpynHFwldgXO7lS_0B_N85t6YPVjGa-c2TPQegjJaeUSH62i7acMkZbxbeUkVdoQ4mmzVZo8hptCGGyUYKJI_SulBtCiG4VeYuO-FYRJqjcoLurOMOQ7RzigF2adnbt94Cn1MO4Dm3ssXUORqgb6HEJ0zJWJsWCM-zBjqUKo095OkzteJBAhDzAHBzubAkFJ19d5jTdphIirrQDPKzQQfQevfHVCD481GP06-Lbz_PL5vrH96vzr9eNE4zOTds6y5yXXAMRjrlOcipAU9_1sufe-9Z2glivlNTaE0e1laLrbK8ApGs7foy-3Pvulm6C3kGcsx3NLofJ5luTbDAvNzH8NkPaG601U1taDU4eDHL6s0CZzRRKPc5oI6SlGCal0lITySr6-T_0Ji253mellBBcSLIant1TLqdSMvjHx1Bi1ozNmrF5yrgqPj3_wyP_L1T-FwzRqKE</recordid><startdate>20230228</startdate><enddate>20230228</enddate><creator>Ma, Wen</creator><creator>You, Shengjun</creator><creator>Regnier, Michael</creator><creator>McCammon, J Andrew</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5437-9851</orcidid><orcidid>https://orcid.org/0000-0003-3065-1456</orcidid><orcidid>https://orcid.org/0000-0002-1123-5273</orcidid></search><sort><creationdate>20230228</creationdate><title>Integrating comparative modeling and accelerated simulations reveals conformational and energetic basis of actomyosin force generation</title><author>Ma, Wen ; You, Shengjun ; Regnier, Michael ; McCammon, J Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-55ca2cf739e04c2cb7314e91fbd7d3fff5ab40af88799f0c19a74bbad8ee7c5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actin</topic><topic>Actin Cytoskeleton - metabolism</topic><topic>Actins - metabolism</topic><topic>Actomyosin</topic><topic>Actomyosin - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Biological Sciences</topic><topic>Cardiomyopathy</topic><topic>Cardiovascular diseases</topic><topic>Dynamic structural analysis</topic><topic>Heart diseases</topic><topic>Humans</topic><topic>Modelling</topic><topic>Molecular dynamics</topic><topic>Muscle contraction</topic><topic>Muscular function</topic><topic>Mutation</topic><topic>Myosin</topic><topic>Myosins - metabolism</topic><topic>Physical Sciences</topic><topic>Protein Conformation</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Simulation</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Wen</creatorcontrib><creatorcontrib>You, Shengjun</creatorcontrib><creatorcontrib>Regnier, Michael</creatorcontrib><creatorcontrib>McCammon, J Andrew</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Wen</au><au>You, Shengjun</au><au>Regnier, Michael</au><au>McCammon, J Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating comparative modeling and accelerated simulations reveals conformational and energetic basis of actomyosin force generation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-02-28</date><risdate>2023</risdate><volume>120</volume><issue>9</issue><spage>e2215836120</spage><epage>e2215836120</epage><pages>e2215836120-e2215836120</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Muscle contraction is performed by arrays of contractile proteins in the sarcomere. Serious heart diseases, such as cardiomyopathy, can often be results of mutations in myosin and actin. Direct characterization of how small changes in the myosin-actin complex impact its force production remains challenging. Molecular dynamics (MD) simulations, although capable of studying protein structure-function relationships, are limited owing to the slow timescale of the myosin cycle as well as a lack of various intermediate structures for the actomyosin complex. Here, employing comparative modeling and enhanced sampling MD simulations, we show how the human cardiac myosin generates force during the mechanochemical cycle. Initial conformational ensembles for different myosin-actin states are learned from multiple structural templates with Rosetta. This enables us to efficiently sample the energy landscape of the system using Gaussian accelerated MD. Key myosin loop residues, whose substitutions are related to cardiomyopathy, are identified to form stable or metastable interactions with the actin surface. We find that the actin-binding cleft closure is allosterically coupled to the myosin motor core transitions and ATP-hydrolysis product release from the active site. Furthermore, a gate between switch I and switch II is suggested to control phosphate release at the prepowerstroke state. Our approach demonstrates the ability to link sequence and structural information to motor functions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>36802417</pmid><doi>10.1073/pnas.2215836120</doi><orcidid>https://orcid.org/0000-0001-5437-9851</orcidid><orcidid>https://orcid.org/0000-0003-3065-1456</orcidid><orcidid>https://orcid.org/0000-0002-1123-5273</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2023-02, Vol.120 (9), p.e2215836120-e2215836120
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9992861
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Actin
Actin Cytoskeleton - metabolism
Actins - metabolism
Actomyosin
Actomyosin - metabolism
Adenosine Triphosphate - metabolism
Biological Sciences
Cardiomyopathy
Cardiovascular diseases
Dynamic structural analysis
Heart diseases
Humans
Modelling
Molecular dynamics
Muscle contraction
Muscular function
Mutation
Myosin
Myosins - metabolism
Physical Sciences
Protein Conformation
Protein structure
Proteins
Simulation
Structure-function relationships
title Integrating comparative modeling and accelerated simulations reveals conformational and energetic basis of actomyosin force generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T18%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20comparative%20modeling%20and%20accelerated%20simulations%20reveals%20conformational%20and%20energetic%20basis%20of%20actomyosin%20force%20generation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ma,%20Wen&rft.date=2023-02-28&rft.volume=120&rft.issue=9&rft.spage=e2215836120&rft.epage=e2215836120&rft.pages=e2215836120-e2215836120&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2215836120&rft_dat=%3Cproquest_pubme%3E2778979072%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784434701&rft_id=info:pmid/36802417&rfr_iscdi=true