Integrating comparative modeling and accelerated simulations reveals conformational and energetic basis of actomyosin force generation
Muscle contraction is performed by arrays of contractile proteins in the sarcomere. Serious heart diseases, such as cardiomyopathy, can often be results of mutations in myosin and actin. Direct characterization of how small changes in the myosin-actin complex impact its force production remains chal...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2023-02, Vol.120 (9), p.e2215836120-e2215836120 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e2215836120 |
---|---|
container_issue | 9 |
container_start_page | e2215836120 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 120 |
creator | Ma, Wen You, Shengjun Regnier, Michael McCammon, J Andrew |
description | Muscle contraction is performed by arrays of contractile proteins in the sarcomere. Serious heart diseases, such as cardiomyopathy, can often be results of mutations in myosin and actin. Direct characterization of how small changes in the myosin-actin complex impact its force production remains challenging. Molecular dynamics (MD) simulations, although capable of studying protein structure-function relationships, are limited owing to the slow timescale of the myosin cycle as well as a lack of various intermediate structures for the actomyosin complex. Here, employing comparative modeling and enhanced sampling MD simulations, we show how the human cardiac myosin generates force during the mechanochemical cycle. Initial conformational ensembles for different myosin-actin states are learned from multiple structural templates with Rosetta. This enables us to efficiently sample the energy landscape of the system using Gaussian accelerated MD. Key myosin loop residues, whose substitutions are related to cardiomyopathy, are identified to form stable or metastable interactions with the actin surface. We find that the actin-binding cleft closure is allosterically coupled to the myosin motor core transitions and ATP-hydrolysis product release from the active site. Furthermore, a gate between switch I and switch II is suggested to control phosphate release at the prepowerstroke state. Our approach demonstrates the ability to link sequence and structural information to motor functions. |
doi_str_mv | 10.1073/pnas.2215836120 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9992861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2778979072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-55ca2cf739e04c2cb7314e91fbd7d3fff5ab40af88799f0c19a74bbad8ee7c5b3</originalsourceid><addsrcrecordid>eNpdkUtv1TAQhS0EopfCmh2yxKabtH7l2t4goYrSSpXYwNpynHFwldgXO7lS_0B_N85t6YPVjGa-c2TPQegjJaeUSH62i7acMkZbxbeUkVdoQ4mmzVZo8hptCGGyUYKJI_SulBtCiG4VeYuO-FYRJqjcoLurOMOQ7RzigF2adnbt94Cn1MO4Dm3ssXUORqgb6HEJ0zJWJsWCM-zBjqUKo095OkzteJBAhDzAHBzubAkFJ19d5jTdphIirrQDPKzQQfQevfHVCD481GP06-Lbz_PL5vrH96vzr9eNE4zOTds6y5yXXAMRjrlOcipAU9_1sufe-9Z2glivlNTaE0e1laLrbK8ApGs7foy-3Pvulm6C3kGcsx3NLofJ5luTbDAvNzH8NkPaG601U1taDU4eDHL6s0CZzRRKPc5oI6SlGCal0lITySr6-T_0Ji253mellBBcSLIant1TLqdSMvjHx1Bi1ozNmrF5yrgqPj3_wyP_L1T-FwzRqKE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784434701</pqid></control><display><type>article</type><title>Integrating comparative modeling and accelerated simulations reveals conformational and energetic basis of actomyosin force generation</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ma, Wen ; You, Shengjun ; Regnier, Michael ; McCammon, J Andrew</creator><creatorcontrib>Ma, Wen ; You, Shengjun ; Regnier, Michael ; McCammon, J Andrew</creatorcontrib><description>Muscle contraction is performed by arrays of contractile proteins in the sarcomere. Serious heart diseases, such as cardiomyopathy, can often be results of mutations in myosin and actin. Direct characterization of how small changes in the myosin-actin complex impact its force production remains challenging. Molecular dynamics (MD) simulations, although capable of studying protein structure-function relationships, are limited owing to the slow timescale of the myosin cycle as well as a lack of various intermediate structures for the actomyosin complex. Here, employing comparative modeling and enhanced sampling MD simulations, we show how the human cardiac myosin generates force during the mechanochemical cycle. Initial conformational ensembles for different myosin-actin states are learned from multiple structural templates with Rosetta. This enables us to efficiently sample the energy landscape of the system using Gaussian accelerated MD. Key myosin loop residues, whose substitutions are related to cardiomyopathy, are identified to form stable or metastable interactions with the actin surface. We find that the actin-binding cleft closure is allosterically coupled to the myosin motor core transitions and ATP-hydrolysis product release from the active site. Furthermore, a gate between switch I and switch II is suggested to control phosphate release at the prepowerstroke state. Our approach demonstrates the ability to link sequence and structural information to motor functions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2215836120</identifier><identifier>PMID: 36802417</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Actin ; Actin Cytoskeleton - metabolism ; Actins - metabolism ; Actomyosin ; Actomyosin - metabolism ; Adenosine Triphosphate - metabolism ; Biological Sciences ; Cardiomyopathy ; Cardiovascular diseases ; Dynamic structural analysis ; Heart diseases ; Humans ; Modelling ; Molecular dynamics ; Muscle contraction ; Muscular function ; Mutation ; Myosin ; Myosins - metabolism ; Physical Sciences ; Protein Conformation ; Protein structure ; Proteins ; Simulation ; Structure-function relationships</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-02, Vol.120 (9), p.e2215836120-e2215836120</ispartof><rights>Copyright National Academy of Sciences Feb 28, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-55ca2cf739e04c2cb7314e91fbd7d3fff5ab40af88799f0c19a74bbad8ee7c5b3</citedby><cites>FETCH-LOGICAL-c421t-55ca2cf739e04c2cb7314e91fbd7d3fff5ab40af88799f0c19a74bbad8ee7c5b3</cites><orcidid>0000-0001-5437-9851 ; 0000-0003-3065-1456 ; 0000-0002-1123-5273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992861/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992861/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36802417$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Wen</creatorcontrib><creatorcontrib>You, Shengjun</creatorcontrib><creatorcontrib>Regnier, Michael</creatorcontrib><creatorcontrib>McCammon, J Andrew</creatorcontrib><title>Integrating comparative modeling and accelerated simulations reveals conformational and energetic basis of actomyosin force generation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Muscle contraction is performed by arrays of contractile proteins in the sarcomere. Serious heart diseases, such as cardiomyopathy, can often be results of mutations in myosin and actin. Direct characterization of how small changes in the myosin-actin complex impact its force production remains challenging. Molecular dynamics (MD) simulations, although capable of studying protein structure-function relationships, are limited owing to the slow timescale of the myosin cycle as well as a lack of various intermediate structures for the actomyosin complex. Here, employing comparative modeling and enhanced sampling MD simulations, we show how the human cardiac myosin generates force during the mechanochemical cycle. Initial conformational ensembles for different myosin-actin states are learned from multiple structural templates with Rosetta. This enables us to efficiently sample the energy landscape of the system using Gaussian accelerated MD. Key myosin loop residues, whose substitutions are related to cardiomyopathy, are identified to form stable or metastable interactions with the actin surface. We find that the actin-binding cleft closure is allosterically coupled to the myosin motor core transitions and ATP-hydrolysis product release from the active site. Furthermore, a gate between switch I and switch II is suggested to control phosphate release at the prepowerstroke state. Our approach demonstrates the ability to link sequence and structural information to motor functions.</description><subject>Actin</subject><subject>Actin Cytoskeleton - metabolism</subject><subject>Actins - metabolism</subject><subject>Actomyosin</subject><subject>Actomyosin - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Biological Sciences</subject><subject>Cardiomyopathy</subject><subject>Cardiovascular diseases</subject><subject>Dynamic structural analysis</subject><subject>Heart diseases</subject><subject>Humans</subject><subject>Modelling</subject><subject>Molecular dynamics</subject><subject>Muscle contraction</subject><subject>Muscular function</subject><subject>Mutation</subject><subject>Myosin</subject><subject>Myosins - metabolism</subject><subject>Physical Sciences</subject><subject>Protein Conformation</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Simulation</subject><subject>Structure-function relationships</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtv1TAQhS0EopfCmh2yxKabtH7l2t4goYrSSpXYwNpynHFwldgXO7lS_0B_N85t6YPVjGa-c2TPQegjJaeUSH62i7acMkZbxbeUkVdoQ4mmzVZo8hptCGGyUYKJI_SulBtCiG4VeYuO-FYRJqjcoLurOMOQ7RzigF2adnbt94Cn1MO4Dm3ssXUORqgb6HEJ0zJWJsWCM-zBjqUKo095OkzteJBAhDzAHBzubAkFJ19d5jTdphIirrQDPKzQQfQevfHVCD481GP06-Lbz_PL5vrH96vzr9eNE4zOTds6y5yXXAMRjrlOcipAU9_1sufe-9Z2glivlNTaE0e1laLrbK8ApGs7foy-3Pvulm6C3kGcsx3NLofJ5luTbDAvNzH8NkPaG601U1taDU4eDHL6s0CZzRRKPc5oI6SlGCal0lITySr6-T_0Ji253mellBBcSLIant1TLqdSMvjHx1Bi1ozNmrF5yrgqPj3_wyP_L1T-FwzRqKE</recordid><startdate>20230228</startdate><enddate>20230228</enddate><creator>Ma, Wen</creator><creator>You, Shengjun</creator><creator>Regnier, Michael</creator><creator>McCammon, J Andrew</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5437-9851</orcidid><orcidid>https://orcid.org/0000-0003-3065-1456</orcidid><orcidid>https://orcid.org/0000-0002-1123-5273</orcidid></search><sort><creationdate>20230228</creationdate><title>Integrating comparative modeling and accelerated simulations reveals conformational and energetic basis of actomyosin force generation</title><author>Ma, Wen ; You, Shengjun ; Regnier, Michael ; McCammon, J Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-55ca2cf739e04c2cb7314e91fbd7d3fff5ab40af88799f0c19a74bbad8ee7c5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actin</topic><topic>Actin Cytoskeleton - metabolism</topic><topic>Actins - metabolism</topic><topic>Actomyosin</topic><topic>Actomyosin - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Biological Sciences</topic><topic>Cardiomyopathy</topic><topic>Cardiovascular diseases</topic><topic>Dynamic structural analysis</topic><topic>Heart diseases</topic><topic>Humans</topic><topic>Modelling</topic><topic>Molecular dynamics</topic><topic>Muscle contraction</topic><topic>Muscular function</topic><topic>Mutation</topic><topic>Myosin</topic><topic>Myosins - metabolism</topic><topic>Physical Sciences</topic><topic>Protein Conformation</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Simulation</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Wen</creatorcontrib><creatorcontrib>You, Shengjun</creatorcontrib><creatorcontrib>Regnier, Michael</creatorcontrib><creatorcontrib>McCammon, J Andrew</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Wen</au><au>You, Shengjun</au><au>Regnier, Michael</au><au>McCammon, J Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating comparative modeling and accelerated simulations reveals conformational and energetic basis of actomyosin force generation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-02-28</date><risdate>2023</risdate><volume>120</volume><issue>9</issue><spage>e2215836120</spage><epage>e2215836120</epage><pages>e2215836120-e2215836120</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Muscle contraction is performed by arrays of contractile proteins in the sarcomere. Serious heart diseases, such as cardiomyopathy, can often be results of mutations in myosin and actin. Direct characterization of how small changes in the myosin-actin complex impact its force production remains challenging. Molecular dynamics (MD) simulations, although capable of studying protein structure-function relationships, are limited owing to the slow timescale of the myosin cycle as well as a lack of various intermediate structures for the actomyosin complex. Here, employing comparative modeling and enhanced sampling MD simulations, we show how the human cardiac myosin generates force during the mechanochemical cycle. Initial conformational ensembles for different myosin-actin states are learned from multiple structural templates with Rosetta. This enables us to efficiently sample the energy landscape of the system using Gaussian accelerated MD. Key myosin loop residues, whose substitutions are related to cardiomyopathy, are identified to form stable or metastable interactions with the actin surface. We find that the actin-binding cleft closure is allosterically coupled to the myosin motor core transitions and ATP-hydrolysis product release from the active site. Furthermore, a gate between switch I and switch II is suggested to control phosphate release at the prepowerstroke state. Our approach demonstrates the ability to link sequence and structural information to motor functions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>36802417</pmid><doi>10.1073/pnas.2215836120</doi><orcidid>https://orcid.org/0000-0001-5437-9851</orcidid><orcidid>https://orcid.org/0000-0003-3065-1456</orcidid><orcidid>https://orcid.org/0000-0002-1123-5273</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2023-02, Vol.120 (9), p.e2215836120-e2215836120 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9992861 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Actin Actin Cytoskeleton - metabolism Actins - metabolism Actomyosin Actomyosin - metabolism Adenosine Triphosphate - metabolism Biological Sciences Cardiomyopathy Cardiovascular diseases Dynamic structural analysis Heart diseases Humans Modelling Molecular dynamics Muscle contraction Muscular function Mutation Myosin Myosins - metabolism Physical Sciences Protein Conformation Protein structure Proteins Simulation Structure-function relationships |
title | Integrating comparative modeling and accelerated simulations reveals conformational and energetic basis of actomyosin force generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T18%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20comparative%20modeling%20and%20accelerated%20simulations%20reveals%20conformational%20and%20energetic%20basis%20of%20actomyosin%20force%20generation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ma,%20Wen&rft.date=2023-02-28&rft.volume=120&rft.issue=9&rft.spage=e2215836120&rft.epage=e2215836120&rft.pages=e2215836120-e2215836120&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2215836120&rft_dat=%3Cproquest_pubme%3E2778979072%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784434701&rft_id=info:pmid/36802417&rfr_iscdi=true |