Three-dimensional printing of patient-specific computed tomography lung phantoms: a reader study

Abstract In modern clinical decision-support algorithms, heterogeneity in image characteristics due to variations in imaging systems and protocols hinders the development of reproducible quantitative measures including for feature extraction pipelines. With the help of a reader study, we investigate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PNAS nexus 2023-03, Vol.2 (3), p.pgad026-pgad026
Hauptverfasser: Shapira, Nadav, Donovan, Kevin, Mei, Kai, Geagan, Michael, Roshkovan, Leonid, Gang, Grace J, Abed, Mohammed, Linna, Nathaniel B, Cranston, Coulter P, O'Leary, Cathal N, Dhanaliwala, Ali H, Kontos, Despina, Litt, Harold I, Stayman, J Webster, Shinohara, Russell T, Noël, Peter B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page pgad026
container_issue 3
container_start_page pgad026
container_title PNAS nexus
container_volume 2
creator Shapira, Nadav
Donovan, Kevin
Mei, Kai
Geagan, Michael
Roshkovan, Leonid
Gang, Grace J
Abed, Mohammed
Linna, Nathaniel B
Cranston, Coulter P
O'Leary, Cathal N
Dhanaliwala, Ali H
Kontos, Despina
Litt, Harold I
Stayman, J Webster
Shinohara, Russell T
Noël, Peter B
description Abstract In modern clinical decision-support algorithms, heterogeneity in image characteristics due to variations in imaging systems and protocols hinders the development of reproducible quantitative measures including for feature extraction pipelines. With the help of a reader study, we investigate the ability to provide consistent ground-truth targets by using patient-specific 3D-printed lung phantoms. PixelPrint was developed for 3D-printing lifelike computed tomography (CT) lung phantoms by directly translating clinical images into printer instructions that control density on a voxel-by-voxel basis. Data sets of three COVID-19 patients served as input for 3D-printing lung phantoms. Five radiologists rated patient and phantom images for imaging characteristics and diagnostic confidence in a blinded reader study. Effect sizes of evaluating phantom as opposed to patient images were assessed using linear mixed models. Finally, PixelPrint's production reproducibility was evaluated. Images of patients and phantoms had little variation in the estimated mean (0.03–0.29, using a 1–5 scale). When comparing phantom images to patient images, effect size analysis revealed that the difference was within one-third of the inter- and intrareader variabilities. High correspondence between the four phantoms created using the same patient images was demonstrated by PixelPrint’s production repeatability tests, with greater similarity scores between high-dose acquisitions of the phantoms than between clinical-dose acquisitions of a single phantom. We demonstrated PixelPrint's ability to produce lifelike CT lung phantoms reliably. These phantoms have the potential to provide ground-truth targets for validating the generalizability of inference-based decision-support algorithms between different health centers and imaging protocols and for optimizing examination protocols with realistic patient-based phantoms. Classification: CT lung phantoms, reader study
doi_str_mv 10.1093/pnasnexus/pgad026
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9992761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779117636</galeid><oup_id>10.1093/pnasnexus/pgad026</oup_id><sourcerecordid>A779117636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-661fc052236ebe8e320bb7ca72372b3edb396e2fb192fbc378596309fdc92c003</originalsourceid><addsrcrecordid>eNqNkV1rHCEUhqW0NGGbH9CbIvSmF5nEj4yuvSiE0C8I5Ca5to5znLXMqNWZ0v33cdntkkAviqByfN7Xc3gRekvJBSWKX6ZgSoA_S7lMg-kJEy_QKZMta0R7xV4-uZ-gs1J-EkKYlJReta_RCReKqDVjp-jH_SYDNL2fIBQfgxlxyj7MPgw4OpzM7CHMTUlgvfMW2zilZYYez3GKQzZps8XjUuG0MaHWykdscAbTQ8ZlXvrtG_TKmbHA2eFcoYcvn-9vvjW3d1-_31zfNrYlfG6EoM6SljEuoIM1cEa6TlojGZes49B3XAlgrqOqbpbLdasEJ8r1VjFLCF-hT3vftHQT9LZ2nc2o6zCTyVsdjdfPX4Lf6CH-1kopJgWtBh8OBjn-WqDMevLFwjiaAHEpmsm1aGkr67cr9H6PDmYE7YOL1dHucH0tpaJUCr6jLv5B1dXD5G0M4HytPxPQvcDmWEoGd-yeEr3LXB8z14fMq-bd07GPir8JV-B8D8Ql_YffI513vM8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786515796</pqid></control><display><type>article</type><title>Three-dimensional printing of patient-specific computed tomography lung phantoms: a reader study</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Shapira, Nadav ; Donovan, Kevin ; Mei, Kai ; Geagan, Michael ; Roshkovan, Leonid ; Gang, Grace J ; Abed, Mohammed ; Linna, Nathaniel B ; Cranston, Coulter P ; O'Leary, Cathal N ; Dhanaliwala, Ali H ; Kontos, Despina ; Litt, Harold I ; Stayman, J Webster ; Shinohara, Russell T ; Noël, Peter B</creator><contributor>Yooseph, Shibu</contributor><creatorcontrib>Shapira, Nadav ; Donovan, Kevin ; Mei, Kai ; Geagan, Michael ; Roshkovan, Leonid ; Gang, Grace J ; Abed, Mohammed ; Linna, Nathaniel B ; Cranston, Coulter P ; O'Leary, Cathal N ; Dhanaliwala, Ali H ; Kontos, Despina ; Litt, Harold I ; Stayman, J Webster ; Shinohara, Russell T ; Noël, Peter B ; Yooseph, Shibu</creatorcontrib><description>Abstract In modern clinical decision-support algorithms, heterogeneity in image characteristics due to variations in imaging systems and protocols hinders the development of reproducible quantitative measures including for feature extraction pipelines. With the help of a reader study, we investigate the ability to provide consistent ground-truth targets by using patient-specific 3D-printed lung phantoms. PixelPrint was developed for 3D-printing lifelike computed tomography (CT) lung phantoms by directly translating clinical images into printer instructions that control density on a voxel-by-voxel basis. Data sets of three COVID-19 patients served as input for 3D-printing lung phantoms. Five radiologists rated patient and phantom images for imaging characteristics and diagnostic confidence in a blinded reader study. Effect sizes of evaluating phantom as opposed to patient images were assessed using linear mixed models. Finally, PixelPrint's production reproducibility was evaluated. Images of patients and phantoms had little variation in the estimated mean (0.03–0.29, using a 1–5 scale). When comparing phantom images to patient images, effect size analysis revealed that the difference was within one-third of the inter- and intrareader variabilities. High correspondence between the four phantoms created using the same patient images was demonstrated by PixelPrint’s production repeatability tests, with greater similarity scores between high-dose acquisitions of the phantoms than between clinical-dose acquisitions of a single phantom. We demonstrated PixelPrint's ability to produce lifelike CT lung phantoms reliably. These phantoms have the potential to provide ground-truth targets for validating the generalizability of inference-based decision-support algorithms between different health centers and imaging protocols and for optimizing examination protocols with realistic patient-based phantoms. Classification: CT lung phantoms, reader study</description><identifier>ISSN: 2752-6542</identifier><identifier>EISSN: 2752-6542</identifier><identifier>DOI: 10.1093/pnasnexus/pgad026</identifier><identifier>PMID: 36909822</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>3D printing ; Algorithms ; Biological, Health, and Medical Sciences ; CT imaging ; Diagnosis ; Lung diseases ; Medical imaging equipment ; Medical research ; Medicine, Experimental ; Methods ; Technology application</subject><ispartof>PNAS nexus, 2023-03, Vol.2 (3), p.pgad026-pgad026</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of National Academy of Sciences. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of National Academy of Sciences.</rights><rights>COPYRIGHT 2023 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-661fc052236ebe8e320bb7ca72372b3edb396e2fb192fbc378596309fdc92c003</citedby><cites>FETCH-LOGICAL-c503t-661fc052236ebe8e320bb7ca72372b3edb396e2fb192fbc378596309fdc92c003</cites><orcidid>0000-0001-8627-8203 ; 0000-0002-9294-7001 ; 0000-0002-9671-6171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992761/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992761/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36909822$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Yooseph, Shibu</contributor><creatorcontrib>Shapira, Nadav</creatorcontrib><creatorcontrib>Donovan, Kevin</creatorcontrib><creatorcontrib>Mei, Kai</creatorcontrib><creatorcontrib>Geagan, Michael</creatorcontrib><creatorcontrib>Roshkovan, Leonid</creatorcontrib><creatorcontrib>Gang, Grace J</creatorcontrib><creatorcontrib>Abed, Mohammed</creatorcontrib><creatorcontrib>Linna, Nathaniel B</creatorcontrib><creatorcontrib>Cranston, Coulter P</creatorcontrib><creatorcontrib>O'Leary, Cathal N</creatorcontrib><creatorcontrib>Dhanaliwala, Ali H</creatorcontrib><creatorcontrib>Kontos, Despina</creatorcontrib><creatorcontrib>Litt, Harold I</creatorcontrib><creatorcontrib>Stayman, J Webster</creatorcontrib><creatorcontrib>Shinohara, Russell T</creatorcontrib><creatorcontrib>Noël, Peter B</creatorcontrib><title>Three-dimensional printing of patient-specific computed tomography lung phantoms: a reader study</title><title>PNAS nexus</title><addtitle>PNAS Nexus</addtitle><description>Abstract In modern clinical decision-support algorithms, heterogeneity in image characteristics due to variations in imaging systems and protocols hinders the development of reproducible quantitative measures including for feature extraction pipelines. With the help of a reader study, we investigate the ability to provide consistent ground-truth targets by using patient-specific 3D-printed lung phantoms. PixelPrint was developed for 3D-printing lifelike computed tomography (CT) lung phantoms by directly translating clinical images into printer instructions that control density on a voxel-by-voxel basis. Data sets of three COVID-19 patients served as input for 3D-printing lung phantoms. Five radiologists rated patient and phantom images for imaging characteristics and diagnostic confidence in a blinded reader study. Effect sizes of evaluating phantom as opposed to patient images were assessed using linear mixed models. Finally, PixelPrint's production reproducibility was evaluated. Images of patients and phantoms had little variation in the estimated mean (0.03–0.29, using a 1–5 scale). When comparing phantom images to patient images, effect size analysis revealed that the difference was within one-third of the inter- and intrareader variabilities. High correspondence between the four phantoms created using the same patient images was demonstrated by PixelPrint’s production repeatability tests, with greater similarity scores between high-dose acquisitions of the phantoms than between clinical-dose acquisitions of a single phantom. We demonstrated PixelPrint's ability to produce lifelike CT lung phantoms reliably. These phantoms have the potential to provide ground-truth targets for validating the generalizability of inference-based decision-support algorithms between different health centers and imaging protocols and for optimizing examination protocols with realistic patient-based phantoms. Classification: CT lung phantoms, reader study</description><subject>3D printing</subject><subject>Algorithms</subject><subject>Biological, Health, and Medical Sciences</subject><subject>CT imaging</subject><subject>Diagnosis</subject><subject>Lung diseases</subject><subject>Medical imaging equipment</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Methods</subject><subject>Technology application</subject><issn>2752-6542</issn><issn>2752-6542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNkV1rHCEUhqW0NGGbH9CbIvSmF5nEj4yuvSiE0C8I5Ca5to5znLXMqNWZ0v33cdntkkAviqByfN7Xc3gRekvJBSWKX6ZgSoA_S7lMg-kJEy_QKZMta0R7xV4-uZ-gs1J-EkKYlJReta_RCReKqDVjp-jH_SYDNL2fIBQfgxlxyj7MPgw4OpzM7CHMTUlgvfMW2zilZYYez3GKQzZps8XjUuG0MaHWykdscAbTQ8ZlXvrtG_TKmbHA2eFcoYcvn-9vvjW3d1-_31zfNrYlfG6EoM6SljEuoIM1cEa6TlojGZes49B3XAlgrqOqbpbLdasEJ8r1VjFLCF-hT3vftHQT9LZ2nc2o6zCTyVsdjdfPX4Lf6CH-1kopJgWtBh8OBjn-WqDMevLFwjiaAHEpmsm1aGkr67cr9H6PDmYE7YOL1dHucH0tpaJUCr6jLv5B1dXD5G0M4HytPxPQvcDmWEoGd-yeEr3LXB8z14fMq-bd07GPir8JV-B8D8Ql_YffI513vM8</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Shapira, Nadav</creator><creator>Donovan, Kevin</creator><creator>Mei, Kai</creator><creator>Geagan, Michael</creator><creator>Roshkovan, Leonid</creator><creator>Gang, Grace J</creator><creator>Abed, Mohammed</creator><creator>Linna, Nathaniel B</creator><creator>Cranston, Coulter P</creator><creator>O'Leary, Cathal N</creator><creator>Dhanaliwala, Ali H</creator><creator>Kontos, Despina</creator><creator>Litt, Harold I</creator><creator>Stayman, J Webster</creator><creator>Shinohara, Russell T</creator><creator>Noël, Peter B</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8627-8203</orcidid><orcidid>https://orcid.org/0000-0002-9294-7001</orcidid><orcidid>https://orcid.org/0000-0002-9671-6171</orcidid></search><sort><creationdate>20230301</creationdate><title>Three-dimensional printing of patient-specific computed tomography lung phantoms: a reader study</title><author>Shapira, Nadav ; Donovan, Kevin ; Mei, Kai ; Geagan, Michael ; Roshkovan, Leonid ; Gang, Grace J ; Abed, Mohammed ; Linna, Nathaniel B ; Cranston, Coulter P ; O'Leary, Cathal N ; Dhanaliwala, Ali H ; Kontos, Despina ; Litt, Harold I ; Stayman, J Webster ; Shinohara, Russell T ; Noël, Peter B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-661fc052236ebe8e320bb7ca72372b3edb396e2fb192fbc378596309fdc92c003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D printing</topic><topic>Algorithms</topic><topic>Biological, Health, and Medical Sciences</topic><topic>CT imaging</topic><topic>Diagnosis</topic><topic>Lung diseases</topic><topic>Medical imaging equipment</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Methods</topic><topic>Technology application</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shapira, Nadav</creatorcontrib><creatorcontrib>Donovan, Kevin</creatorcontrib><creatorcontrib>Mei, Kai</creatorcontrib><creatorcontrib>Geagan, Michael</creatorcontrib><creatorcontrib>Roshkovan, Leonid</creatorcontrib><creatorcontrib>Gang, Grace J</creatorcontrib><creatorcontrib>Abed, Mohammed</creatorcontrib><creatorcontrib>Linna, Nathaniel B</creatorcontrib><creatorcontrib>Cranston, Coulter P</creatorcontrib><creatorcontrib>O'Leary, Cathal N</creatorcontrib><creatorcontrib>Dhanaliwala, Ali H</creatorcontrib><creatorcontrib>Kontos, Despina</creatorcontrib><creatorcontrib>Litt, Harold I</creatorcontrib><creatorcontrib>Stayman, J Webster</creatorcontrib><creatorcontrib>Shinohara, Russell T</creatorcontrib><creatorcontrib>Noël, Peter B</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PNAS nexus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shapira, Nadav</au><au>Donovan, Kevin</au><au>Mei, Kai</au><au>Geagan, Michael</au><au>Roshkovan, Leonid</au><au>Gang, Grace J</au><au>Abed, Mohammed</au><au>Linna, Nathaniel B</au><au>Cranston, Coulter P</au><au>O'Leary, Cathal N</au><au>Dhanaliwala, Ali H</au><au>Kontos, Despina</au><au>Litt, Harold I</au><au>Stayman, J Webster</au><au>Shinohara, Russell T</au><au>Noël, Peter B</au><au>Yooseph, Shibu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional printing of patient-specific computed tomography lung phantoms: a reader study</atitle><jtitle>PNAS nexus</jtitle><addtitle>PNAS Nexus</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>2</volume><issue>3</issue><spage>pgad026</spage><epage>pgad026</epage><pages>pgad026-pgad026</pages><issn>2752-6542</issn><eissn>2752-6542</eissn><abstract>Abstract In modern clinical decision-support algorithms, heterogeneity in image characteristics due to variations in imaging systems and protocols hinders the development of reproducible quantitative measures including for feature extraction pipelines. With the help of a reader study, we investigate the ability to provide consistent ground-truth targets by using patient-specific 3D-printed lung phantoms. PixelPrint was developed for 3D-printing lifelike computed tomography (CT) lung phantoms by directly translating clinical images into printer instructions that control density on a voxel-by-voxel basis. Data sets of three COVID-19 patients served as input for 3D-printing lung phantoms. Five radiologists rated patient and phantom images for imaging characteristics and diagnostic confidence in a blinded reader study. Effect sizes of evaluating phantom as opposed to patient images were assessed using linear mixed models. Finally, PixelPrint's production reproducibility was evaluated. Images of patients and phantoms had little variation in the estimated mean (0.03–0.29, using a 1–5 scale). When comparing phantom images to patient images, effect size analysis revealed that the difference was within one-third of the inter- and intrareader variabilities. High correspondence between the four phantoms created using the same patient images was demonstrated by PixelPrint’s production repeatability tests, with greater similarity scores between high-dose acquisitions of the phantoms than between clinical-dose acquisitions of a single phantom. We demonstrated PixelPrint's ability to produce lifelike CT lung phantoms reliably. These phantoms have the potential to provide ground-truth targets for validating the generalizability of inference-based decision-support algorithms between different health centers and imaging protocols and for optimizing examination protocols with realistic patient-based phantoms. Classification: CT lung phantoms, reader study</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>36909822</pmid><doi>10.1093/pnasnexus/pgad026</doi><orcidid>https://orcid.org/0000-0001-8627-8203</orcidid><orcidid>https://orcid.org/0000-0002-9294-7001</orcidid><orcidid>https://orcid.org/0000-0002-9671-6171</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2752-6542
ispartof PNAS nexus, 2023-03, Vol.2 (3), p.pgad026-pgad026
issn 2752-6542
2752-6542
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9992761
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central
subjects 3D printing
Algorithms
Biological, Health, and Medical Sciences
CT imaging
Diagnosis
Lung diseases
Medical imaging equipment
Medical research
Medicine, Experimental
Methods
Technology application
title Three-dimensional printing of patient-specific computed tomography lung phantoms: a reader study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A46%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20printing%20of%20patient-specific%20computed%20tomography%20lung%20phantoms:%20a%20reader%20study&rft.jtitle=PNAS%20nexus&rft.au=Shapira,%20Nadav&rft.date=2023-03-01&rft.volume=2&rft.issue=3&rft.spage=pgad026&rft.epage=pgad026&rft.pages=pgad026-pgad026&rft.issn=2752-6542&rft.eissn=2752-6542&rft_id=info:doi/10.1093/pnasnexus/pgad026&rft_dat=%3Cgale_pubme%3EA779117636%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786515796&rft_id=info:pmid/36909822&rft_galeid=A779117636&rft_oup_id=10.1093/pnasnexus/pgad026&rfr_iscdi=true