CancerCellTracker: a brightfield time-lapse microscopy framework for cancer drug sensitivity estimation

Abstract Motivation Time-lapse microscopy is a powerful technique that relies on images of live cells cultured ex vivo that are captured at regular intervals of time to describe and quantify their behavior under certain experimental conditions. This imaging method has great potential in advancing th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2022-08, Vol.38 (16), p.4002-4010
Hauptverfasser: Jiang, Qibing, Sudalagunta, Praneeth, Silva, Maria C, Canevarolo, Rafael R, Zhao, Xiaohong, Ahmed, Khandakar Tanvir, Alugubelli, Raghunandan Reddy, DeAvila, Gabriel, Tungesvik, Alexandre, Perez, Lia, Gatenby, Robert A, Gillies, Robert J, Baz, Rachid, Meads, Mark B, Shain, Kenneth H, Silva, Ariosto S, Zhang, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4010
container_issue 16
container_start_page 4002
container_title Bioinformatics
container_volume 38
creator Jiang, Qibing
Sudalagunta, Praneeth
Silva, Maria C
Canevarolo, Rafael R
Zhao, Xiaohong
Ahmed, Khandakar Tanvir
Alugubelli, Raghunandan Reddy
DeAvila, Gabriel
Tungesvik, Alexandre
Perez, Lia
Gatenby, Robert A
Gillies, Robert J
Baz, Rachid
Meads, Mark B
Shain, Kenneth H
Silva, Ariosto S
Zhang, Wei
description Abstract Motivation Time-lapse microscopy is a powerful technique that relies on images of live cells cultured ex vivo that are captured at regular intervals of time to describe and quantify their behavior under certain experimental conditions. This imaging method has great potential in advancing the field of precision oncology by quantifying the response of cancer cells to various therapies and identifying the most efficacious treatment for a given patient. Digital image processing algorithms developed so far require high-resolution images involving very few cells originating from homogeneous cell line populations. We propose a novel framework that tracks cancer cells to capture their behavior and quantify cell viability to inform clinical decisions in a high-throughput manner. Results The brightfield microscopy images a large number of patient-derived cells in an ex vivo reconstruction of the tumor microenvironment treated with 31 drugs for up to 6 days. We developed a robust and user-friendly pipeline CancerCellTracker that detects cells in co-culture, tracks these cells across time and identifies cell death events using changes in cell attributes. We validated our computational pipeline by comparing the timing of cell death estimates by CancerCellTracker from brightfield images and a fluorescent channel featuring ethidium homodimer. We benchmarked our results using a state-of-the-art algorithm implemented in ImageJ and previously published in the literature. We highlighted CancerCellTracker’s efficiency in estimating the percentage of live cells in the presence of bone marrow stromal cells. Availability and implementation https://github.com/compbiolabucf/CancerCellTracker. Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btac417
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9991899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btac417</oup_id><sourcerecordid>2681045289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-3828ab02ea830db7e4cd9c4e228ad14e8d25605f8fad96e425cd19bba988de723</originalsourceid><addsrcrecordid>eNqNkcFv2yAYxVG1am3T_gsVx128AgYbdpg0RVtbKVIv7Rlh-JzS2sYDO1X--5Emq5bbTiB478fjewhdU_KVElXeND74oQ2xN5O36aaZjOW0PkHnlFekYESoT3lfVnXBJSnP0EVKL4QIyjn_jM5KUQsqFD1H66UZLMQldN1jNPYV4jdscBP9-nlqPXQOT76HojNjAtx7G0OyYdziNpoe3kJ8xTkEtu8Q7OK8xgmG5Ce_8dMWQ8runDAMl-i0NV2Cq8O6QE-_fj4u74rVw-398seqsFxUU1FKJk1DGBhZEtfUwK1TlgPLx45ykI6JiohWtsapCjgT1lHVNEZJ6aBm5QJ933PHuenBWRimaDo9xpwjbnUwXh_fDP5Zr8NGK6WoVCoDvhwAMfye8wd075PN4zEDhDlpVklKuGByJ6320t1UUoT24xlK9K4lfdySPrSUjdf_hvyw_a0lC-heEObxf6F_AMXAqjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681045289</pqid></control><display><type>article</type><title>CancerCellTracker: a brightfield time-lapse microscopy framework for cancer drug sensitivity estimation</title><source>Oxford Journals Open Access Collection</source><creator>Jiang, Qibing ; Sudalagunta, Praneeth ; Silva, Maria C ; Canevarolo, Rafael R ; Zhao, Xiaohong ; Ahmed, Khandakar Tanvir ; Alugubelli, Raghunandan Reddy ; DeAvila, Gabriel ; Tungesvik, Alexandre ; Perez, Lia ; Gatenby, Robert A ; Gillies, Robert J ; Baz, Rachid ; Meads, Mark B ; Shain, Kenneth H ; Silva, Ariosto S ; Zhang, Wei</creator><creatorcontrib>Jiang, Qibing ; Sudalagunta, Praneeth ; Silva, Maria C ; Canevarolo, Rafael R ; Zhao, Xiaohong ; Ahmed, Khandakar Tanvir ; Alugubelli, Raghunandan Reddy ; DeAvila, Gabriel ; Tungesvik, Alexandre ; Perez, Lia ; Gatenby, Robert A ; Gillies, Robert J ; Baz, Rachid ; Meads, Mark B ; Shain, Kenneth H ; Silva, Ariosto S ; Zhang, Wei</creatorcontrib><description>Abstract Motivation Time-lapse microscopy is a powerful technique that relies on images of live cells cultured ex vivo that are captured at regular intervals of time to describe and quantify their behavior under certain experimental conditions. This imaging method has great potential in advancing the field of precision oncology by quantifying the response of cancer cells to various therapies and identifying the most efficacious treatment for a given patient. Digital image processing algorithms developed so far require high-resolution images involving very few cells originating from homogeneous cell line populations. We propose a novel framework that tracks cancer cells to capture their behavior and quantify cell viability to inform clinical decisions in a high-throughput manner. Results The brightfield microscopy images a large number of patient-derived cells in an ex vivo reconstruction of the tumor microenvironment treated with 31 drugs for up to 6 days. We developed a robust and user-friendly pipeline CancerCellTracker that detects cells in co-culture, tracks these cells across time and identifies cell death events using changes in cell attributes. We validated our computational pipeline by comparing the timing of cell death estimates by CancerCellTracker from brightfield images and a fluorescent channel featuring ethidium homodimer. We benchmarked our results using a state-of-the-art algorithm implemented in ImageJ and previously published in the literature. We highlighted CancerCellTracker’s efficiency in estimating the percentage of live cells in the presence of bone marrow stromal cells. Availability and implementation https://github.com/compbiolabucf/CancerCellTracker. Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btac417</identifier><identifier>PMID: 35751591</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Antineoplastic Agents ; Humans ; Microscopy - methods ; Neoplasms - diagnostic imaging ; Neoplasms - drug therapy ; Original Papers ; Precision Medicine ; Software ; Time-Lapse Imaging ; Tumor Microenvironment</subject><ispartof>Bioinformatics, 2022-08, Vol.38 (16), p.4002-4010</ispartof><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-3828ab02ea830db7e4cd9c4e228ad14e8d25605f8fad96e425cd19bba988de723</citedby><cites>FETCH-LOGICAL-c456t-3828ab02ea830db7e4cd9c4e228ad14e8d25605f8fad96e425cd19bba988de723</cites><orcidid>0000-0003-3605-9373</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9991899/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9991899/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btac417$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35751591$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Qibing</creatorcontrib><creatorcontrib>Sudalagunta, Praneeth</creatorcontrib><creatorcontrib>Silva, Maria C</creatorcontrib><creatorcontrib>Canevarolo, Rafael R</creatorcontrib><creatorcontrib>Zhao, Xiaohong</creatorcontrib><creatorcontrib>Ahmed, Khandakar Tanvir</creatorcontrib><creatorcontrib>Alugubelli, Raghunandan Reddy</creatorcontrib><creatorcontrib>DeAvila, Gabriel</creatorcontrib><creatorcontrib>Tungesvik, Alexandre</creatorcontrib><creatorcontrib>Perez, Lia</creatorcontrib><creatorcontrib>Gatenby, Robert A</creatorcontrib><creatorcontrib>Gillies, Robert J</creatorcontrib><creatorcontrib>Baz, Rachid</creatorcontrib><creatorcontrib>Meads, Mark B</creatorcontrib><creatorcontrib>Shain, Kenneth H</creatorcontrib><creatorcontrib>Silva, Ariosto S</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><title>CancerCellTracker: a brightfield time-lapse microscopy framework for cancer drug sensitivity estimation</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation Time-lapse microscopy is a powerful technique that relies on images of live cells cultured ex vivo that are captured at regular intervals of time to describe and quantify their behavior under certain experimental conditions. This imaging method has great potential in advancing the field of precision oncology by quantifying the response of cancer cells to various therapies and identifying the most efficacious treatment for a given patient. Digital image processing algorithms developed so far require high-resolution images involving very few cells originating from homogeneous cell line populations. We propose a novel framework that tracks cancer cells to capture their behavior and quantify cell viability to inform clinical decisions in a high-throughput manner. Results The brightfield microscopy images a large number of patient-derived cells in an ex vivo reconstruction of the tumor microenvironment treated with 31 drugs for up to 6 days. We developed a robust and user-friendly pipeline CancerCellTracker that detects cells in co-culture, tracks these cells across time and identifies cell death events using changes in cell attributes. We validated our computational pipeline by comparing the timing of cell death estimates by CancerCellTracker from brightfield images and a fluorescent channel featuring ethidium homodimer. We benchmarked our results using a state-of-the-art algorithm implemented in ImageJ and previously published in the literature. We highlighted CancerCellTracker’s efficiency in estimating the percentage of live cells in the presence of bone marrow stromal cells. Availability and implementation https://github.com/compbiolabucf/CancerCellTracker. Supplementary information Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>Antineoplastic Agents</subject><subject>Humans</subject><subject>Microscopy - methods</subject><subject>Neoplasms - diagnostic imaging</subject><subject>Neoplasms - drug therapy</subject><subject>Original Papers</subject><subject>Precision Medicine</subject><subject>Software</subject><subject>Time-Lapse Imaging</subject><subject>Tumor Microenvironment</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFv2yAYxVG1am3T_gsVx128AgYbdpg0RVtbKVIv7Rlh-JzS2sYDO1X--5Emq5bbTiB478fjewhdU_KVElXeND74oQ2xN5O36aaZjOW0PkHnlFekYESoT3lfVnXBJSnP0EVKL4QIyjn_jM5KUQsqFD1H66UZLMQldN1jNPYV4jdscBP9-nlqPXQOT76HojNjAtx7G0OyYdziNpoe3kJ8xTkEtu8Q7OK8xgmG5Ce_8dMWQ8runDAMl-i0NV2Cq8O6QE-_fj4u74rVw-398seqsFxUU1FKJk1DGBhZEtfUwK1TlgPLx45ykI6JiohWtsapCjgT1lHVNEZJ6aBm5QJ933PHuenBWRimaDo9xpwjbnUwXh_fDP5Zr8NGK6WoVCoDvhwAMfye8wd075PN4zEDhDlpVklKuGByJ6320t1UUoT24xlK9K4lfdySPrSUjdf_hvyw_a0lC-heEObxf6F_AMXAqjQ</recordid><startdate>20220810</startdate><enddate>20220810</enddate><creator>Jiang, Qibing</creator><creator>Sudalagunta, Praneeth</creator><creator>Silva, Maria C</creator><creator>Canevarolo, Rafael R</creator><creator>Zhao, Xiaohong</creator><creator>Ahmed, Khandakar Tanvir</creator><creator>Alugubelli, Raghunandan Reddy</creator><creator>DeAvila, Gabriel</creator><creator>Tungesvik, Alexandre</creator><creator>Perez, Lia</creator><creator>Gatenby, Robert A</creator><creator>Gillies, Robert J</creator><creator>Baz, Rachid</creator><creator>Meads, Mark B</creator><creator>Shain, Kenneth H</creator><creator>Silva, Ariosto S</creator><creator>Zhang, Wei</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3605-9373</orcidid></search><sort><creationdate>20220810</creationdate><title>CancerCellTracker: a brightfield time-lapse microscopy framework for cancer drug sensitivity estimation</title><author>Jiang, Qibing ; Sudalagunta, Praneeth ; Silva, Maria C ; Canevarolo, Rafael R ; Zhao, Xiaohong ; Ahmed, Khandakar Tanvir ; Alugubelli, Raghunandan Reddy ; DeAvila, Gabriel ; Tungesvik, Alexandre ; Perez, Lia ; Gatenby, Robert A ; Gillies, Robert J ; Baz, Rachid ; Meads, Mark B ; Shain, Kenneth H ; Silva, Ariosto S ; Zhang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-3828ab02ea830db7e4cd9c4e228ad14e8d25605f8fad96e425cd19bba988de723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Antineoplastic Agents</topic><topic>Humans</topic><topic>Microscopy - methods</topic><topic>Neoplasms - diagnostic imaging</topic><topic>Neoplasms - drug therapy</topic><topic>Original Papers</topic><topic>Precision Medicine</topic><topic>Software</topic><topic>Time-Lapse Imaging</topic><topic>Tumor Microenvironment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Qibing</creatorcontrib><creatorcontrib>Sudalagunta, Praneeth</creatorcontrib><creatorcontrib>Silva, Maria C</creatorcontrib><creatorcontrib>Canevarolo, Rafael R</creatorcontrib><creatorcontrib>Zhao, Xiaohong</creatorcontrib><creatorcontrib>Ahmed, Khandakar Tanvir</creatorcontrib><creatorcontrib>Alugubelli, Raghunandan Reddy</creatorcontrib><creatorcontrib>DeAvila, Gabriel</creatorcontrib><creatorcontrib>Tungesvik, Alexandre</creatorcontrib><creatorcontrib>Perez, Lia</creatorcontrib><creatorcontrib>Gatenby, Robert A</creatorcontrib><creatorcontrib>Gillies, Robert J</creatorcontrib><creatorcontrib>Baz, Rachid</creatorcontrib><creatorcontrib>Meads, Mark B</creatorcontrib><creatorcontrib>Shain, Kenneth H</creatorcontrib><creatorcontrib>Silva, Ariosto S</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiang, Qibing</au><au>Sudalagunta, Praneeth</au><au>Silva, Maria C</au><au>Canevarolo, Rafael R</au><au>Zhao, Xiaohong</au><au>Ahmed, Khandakar Tanvir</au><au>Alugubelli, Raghunandan Reddy</au><au>DeAvila, Gabriel</au><au>Tungesvik, Alexandre</au><au>Perez, Lia</au><au>Gatenby, Robert A</au><au>Gillies, Robert J</au><au>Baz, Rachid</au><au>Meads, Mark B</au><au>Shain, Kenneth H</au><au>Silva, Ariosto S</au><au>Zhang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CancerCellTracker: a brightfield time-lapse microscopy framework for cancer drug sensitivity estimation</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2022-08-10</date><risdate>2022</risdate><volume>38</volume><issue>16</issue><spage>4002</spage><epage>4010</epage><pages>4002-4010</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract Motivation Time-lapse microscopy is a powerful technique that relies on images of live cells cultured ex vivo that are captured at regular intervals of time to describe and quantify their behavior under certain experimental conditions. This imaging method has great potential in advancing the field of precision oncology by quantifying the response of cancer cells to various therapies and identifying the most efficacious treatment for a given patient. Digital image processing algorithms developed so far require high-resolution images involving very few cells originating from homogeneous cell line populations. We propose a novel framework that tracks cancer cells to capture their behavior and quantify cell viability to inform clinical decisions in a high-throughput manner. Results The brightfield microscopy images a large number of patient-derived cells in an ex vivo reconstruction of the tumor microenvironment treated with 31 drugs for up to 6 days. We developed a robust and user-friendly pipeline CancerCellTracker that detects cells in co-culture, tracks these cells across time and identifies cell death events using changes in cell attributes. We validated our computational pipeline by comparing the timing of cell death estimates by CancerCellTracker from brightfield images and a fluorescent channel featuring ethidium homodimer. We benchmarked our results using a state-of-the-art algorithm implemented in ImageJ and previously published in the literature. We highlighted CancerCellTracker’s efficiency in estimating the percentage of live cells in the presence of bone marrow stromal cells. Availability and implementation https://github.com/compbiolabucf/CancerCellTracker. Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>35751591</pmid><doi>10.1093/bioinformatics/btac417</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3605-9373</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2022-08, Vol.38 (16), p.4002-4010
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9991899
source Oxford Journals Open Access Collection
subjects Algorithms
Antineoplastic Agents
Humans
Microscopy - methods
Neoplasms - diagnostic imaging
Neoplasms - drug therapy
Original Papers
Precision Medicine
Software
Time-Lapse Imaging
Tumor Microenvironment
title CancerCellTracker: a brightfield time-lapse microscopy framework for cancer drug sensitivity estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A52%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CancerCellTracker:%20a%20brightfield%20time-lapse%20microscopy%20framework%20for%20cancer%20drug%20sensitivity%20estimation&rft.jtitle=Bioinformatics&rft.au=Jiang,%20Qibing&rft.date=2022-08-10&rft.volume=38&rft.issue=16&rft.spage=4002&rft.epage=4010&rft.pages=4002-4010&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btac417&rft_dat=%3Cproquest_TOX%3E2681045289%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2681045289&rft_id=info:pmid/35751591&rft_oup_id=10.1093/bioinformatics/btac417&rfr_iscdi=true