CancerCellTracker: a brightfield time-lapse microscopy framework for cancer drug sensitivity estimation
Abstract Motivation Time-lapse microscopy is a powerful technique that relies on images of live cells cultured ex vivo that are captured at regular intervals of time to describe and quantify their behavior under certain experimental conditions. This imaging method has great potential in advancing th...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2022-08, Vol.38 (16), p.4002-4010 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4010 |
---|---|
container_issue | 16 |
container_start_page | 4002 |
container_title | Bioinformatics |
container_volume | 38 |
creator | Jiang, Qibing Sudalagunta, Praneeth Silva, Maria C Canevarolo, Rafael R Zhao, Xiaohong Ahmed, Khandakar Tanvir Alugubelli, Raghunandan Reddy DeAvila, Gabriel Tungesvik, Alexandre Perez, Lia Gatenby, Robert A Gillies, Robert J Baz, Rachid Meads, Mark B Shain, Kenneth H Silva, Ariosto S Zhang, Wei |
description | Abstract
Motivation
Time-lapse microscopy is a powerful technique that relies on images of live cells cultured ex vivo that are captured at regular intervals of time to describe and quantify their behavior under certain experimental conditions. This imaging method has great potential in advancing the field of precision oncology by quantifying the response of cancer cells to various therapies and identifying the most efficacious treatment for a given patient. Digital image processing algorithms developed so far require high-resolution images involving very few cells originating from homogeneous cell line populations. We propose a novel framework that tracks cancer cells to capture their behavior and quantify cell viability to inform clinical decisions in a high-throughput manner.
Results
The brightfield microscopy images a large number of patient-derived cells in an ex vivo reconstruction of the tumor microenvironment treated with 31 drugs for up to 6 days. We developed a robust and user-friendly pipeline CancerCellTracker that detects cells in co-culture, tracks these cells across time and identifies cell death events using changes in cell attributes. We validated our computational pipeline by comparing the timing of cell death estimates by CancerCellTracker from brightfield images and a fluorescent channel featuring ethidium homodimer. We benchmarked our results using a state-of-the-art algorithm implemented in ImageJ and previously published in the literature. We highlighted CancerCellTracker’s efficiency in estimating the percentage of live cells in the presence of bone marrow stromal cells.
Availability and implementation
https://github.com/compbiolabucf/CancerCellTracker.
Supplementary information
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btac417 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9991899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btac417</oup_id><sourcerecordid>2681045289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-3828ab02ea830db7e4cd9c4e228ad14e8d25605f8fad96e425cd19bba988de723</originalsourceid><addsrcrecordid>eNqNkcFv2yAYxVG1am3T_gsVx128AgYbdpg0RVtbKVIv7Rlh-JzS2sYDO1X--5Emq5bbTiB478fjewhdU_KVElXeND74oQ2xN5O36aaZjOW0PkHnlFekYESoT3lfVnXBJSnP0EVKL4QIyjn_jM5KUQsqFD1H66UZLMQldN1jNPYV4jdscBP9-nlqPXQOT76HojNjAtx7G0OyYdziNpoe3kJ8xTkEtu8Q7OK8xgmG5Ce_8dMWQ8runDAMl-i0NV2Cq8O6QE-_fj4u74rVw-398seqsFxUU1FKJk1DGBhZEtfUwK1TlgPLx45ykI6JiohWtsapCjgT1lHVNEZJ6aBm5QJ933PHuenBWRimaDo9xpwjbnUwXh_fDP5Zr8NGK6WoVCoDvhwAMfye8wd075PN4zEDhDlpVklKuGByJ6320t1UUoT24xlK9K4lfdySPrSUjdf_hvyw_a0lC-heEObxf6F_AMXAqjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681045289</pqid></control><display><type>article</type><title>CancerCellTracker: a brightfield time-lapse microscopy framework for cancer drug sensitivity estimation</title><source>Oxford Journals Open Access Collection</source><creator>Jiang, Qibing ; Sudalagunta, Praneeth ; Silva, Maria C ; Canevarolo, Rafael R ; Zhao, Xiaohong ; Ahmed, Khandakar Tanvir ; Alugubelli, Raghunandan Reddy ; DeAvila, Gabriel ; Tungesvik, Alexandre ; Perez, Lia ; Gatenby, Robert A ; Gillies, Robert J ; Baz, Rachid ; Meads, Mark B ; Shain, Kenneth H ; Silva, Ariosto S ; Zhang, Wei</creator><creatorcontrib>Jiang, Qibing ; Sudalagunta, Praneeth ; Silva, Maria C ; Canevarolo, Rafael R ; Zhao, Xiaohong ; Ahmed, Khandakar Tanvir ; Alugubelli, Raghunandan Reddy ; DeAvila, Gabriel ; Tungesvik, Alexandre ; Perez, Lia ; Gatenby, Robert A ; Gillies, Robert J ; Baz, Rachid ; Meads, Mark B ; Shain, Kenneth H ; Silva, Ariosto S ; Zhang, Wei</creatorcontrib><description>Abstract
Motivation
Time-lapse microscopy is a powerful technique that relies on images of live cells cultured ex vivo that are captured at regular intervals of time to describe and quantify their behavior under certain experimental conditions. This imaging method has great potential in advancing the field of precision oncology by quantifying the response of cancer cells to various therapies and identifying the most efficacious treatment for a given patient. Digital image processing algorithms developed so far require high-resolution images involving very few cells originating from homogeneous cell line populations. We propose a novel framework that tracks cancer cells to capture their behavior and quantify cell viability to inform clinical decisions in a high-throughput manner.
Results
The brightfield microscopy images a large number of patient-derived cells in an ex vivo reconstruction of the tumor microenvironment treated with 31 drugs for up to 6 days. We developed a robust and user-friendly pipeline CancerCellTracker that detects cells in co-culture, tracks these cells across time and identifies cell death events using changes in cell attributes. We validated our computational pipeline by comparing the timing of cell death estimates by CancerCellTracker from brightfield images and a fluorescent channel featuring ethidium homodimer. We benchmarked our results using a state-of-the-art algorithm implemented in ImageJ and previously published in the literature. We highlighted CancerCellTracker’s efficiency in estimating the percentage of live cells in the presence of bone marrow stromal cells.
Availability and implementation
https://github.com/compbiolabucf/CancerCellTracker.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btac417</identifier><identifier>PMID: 35751591</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Antineoplastic Agents ; Humans ; Microscopy - methods ; Neoplasms - diagnostic imaging ; Neoplasms - drug therapy ; Original Papers ; Precision Medicine ; Software ; Time-Lapse Imaging ; Tumor Microenvironment</subject><ispartof>Bioinformatics, 2022-08, Vol.38 (16), p.4002-4010</ispartof><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-3828ab02ea830db7e4cd9c4e228ad14e8d25605f8fad96e425cd19bba988de723</citedby><cites>FETCH-LOGICAL-c456t-3828ab02ea830db7e4cd9c4e228ad14e8d25605f8fad96e425cd19bba988de723</cites><orcidid>0000-0003-3605-9373</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9991899/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9991899/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btac417$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35751591$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Qibing</creatorcontrib><creatorcontrib>Sudalagunta, Praneeth</creatorcontrib><creatorcontrib>Silva, Maria C</creatorcontrib><creatorcontrib>Canevarolo, Rafael R</creatorcontrib><creatorcontrib>Zhao, Xiaohong</creatorcontrib><creatorcontrib>Ahmed, Khandakar Tanvir</creatorcontrib><creatorcontrib>Alugubelli, Raghunandan Reddy</creatorcontrib><creatorcontrib>DeAvila, Gabriel</creatorcontrib><creatorcontrib>Tungesvik, Alexandre</creatorcontrib><creatorcontrib>Perez, Lia</creatorcontrib><creatorcontrib>Gatenby, Robert A</creatorcontrib><creatorcontrib>Gillies, Robert J</creatorcontrib><creatorcontrib>Baz, Rachid</creatorcontrib><creatorcontrib>Meads, Mark B</creatorcontrib><creatorcontrib>Shain, Kenneth H</creatorcontrib><creatorcontrib>Silva, Ariosto S</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><title>CancerCellTracker: a brightfield time-lapse microscopy framework for cancer drug sensitivity estimation</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
Time-lapse microscopy is a powerful technique that relies on images of live cells cultured ex vivo that are captured at regular intervals of time to describe and quantify their behavior under certain experimental conditions. This imaging method has great potential in advancing the field of precision oncology by quantifying the response of cancer cells to various therapies and identifying the most efficacious treatment for a given patient. Digital image processing algorithms developed so far require high-resolution images involving very few cells originating from homogeneous cell line populations. We propose a novel framework that tracks cancer cells to capture their behavior and quantify cell viability to inform clinical decisions in a high-throughput manner.
Results
The brightfield microscopy images a large number of patient-derived cells in an ex vivo reconstruction of the tumor microenvironment treated with 31 drugs for up to 6 days. We developed a robust and user-friendly pipeline CancerCellTracker that detects cells in co-culture, tracks these cells across time and identifies cell death events using changes in cell attributes. We validated our computational pipeline by comparing the timing of cell death estimates by CancerCellTracker from brightfield images and a fluorescent channel featuring ethidium homodimer. We benchmarked our results using a state-of-the-art algorithm implemented in ImageJ and previously published in the literature. We highlighted CancerCellTracker’s efficiency in estimating the percentage of live cells in the presence of bone marrow stromal cells.
Availability and implementation
https://github.com/compbiolabucf/CancerCellTracker.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>Antineoplastic Agents</subject><subject>Humans</subject><subject>Microscopy - methods</subject><subject>Neoplasms - diagnostic imaging</subject><subject>Neoplasms - drug therapy</subject><subject>Original Papers</subject><subject>Precision Medicine</subject><subject>Software</subject><subject>Time-Lapse Imaging</subject><subject>Tumor Microenvironment</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFv2yAYxVG1am3T_gsVx128AgYbdpg0RVtbKVIv7Rlh-JzS2sYDO1X--5Emq5bbTiB478fjewhdU_KVElXeND74oQ2xN5O36aaZjOW0PkHnlFekYESoT3lfVnXBJSnP0EVKL4QIyjn_jM5KUQsqFD1H66UZLMQldN1jNPYV4jdscBP9-nlqPXQOT76HojNjAtx7G0OyYdziNpoe3kJ8xTkEtu8Q7OK8xgmG5Ce_8dMWQ8runDAMl-i0NV2Cq8O6QE-_fj4u74rVw-398seqsFxUU1FKJk1DGBhZEtfUwK1TlgPLx45ykI6JiohWtsapCjgT1lHVNEZJ6aBm5QJ933PHuenBWRimaDo9xpwjbnUwXh_fDP5Zr8NGK6WoVCoDvhwAMfye8wd075PN4zEDhDlpVklKuGByJ6320t1UUoT24xlK9K4lfdySPrSUjdf_hvyw_a0lC-heEObxf6F_AMXAqjQ</recordid><startdate>20220810</startdate><enddate>20220810</enddate><creator>Jiang, Qibing</creator><creator>Sudalagunta, Praneeth</creator><creator>Silva, Maria C</creator><creator>Canevarolo, Rafael R</creator><creator>Zhao, Xiaohong</creator><creator>Ahmed, Khandakar Tanvir</creator><creator>Alugubelli, Raghunandan Reddy</creator><creator>DeAvila, Gabriel</creator><creator>Tungesvik, Alexandre</creator><creator>Perez, Lia</creator><creator>Gatenby, Robert A</creator><creator>Gillies, Robert J</creator><creator>Baz, Rachid</creator><creator>Meads, Mark B</creator><creator>Shain, Kenneth H</creator><creator>Silva, Ariosto S</creator><creator>Zhang, Wei</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3605-9373</orcidid></search><sort><creationdate>20220810</creationdate><title>CancerCellTracker: a brightfield time-lapse microscopy framework for cancer drug sensitivity estimation</title><author>Jiang, Qibing ; Sudalagunta, Praneeth ; Silva, Maria C ; Canevarolo, Rafael R ; Zhao, Xiaohong ; Ahmed, Khandakar Tanvir ; Alugubelli, Raghunandan Reddy ; DeAvila, Gabriel ; Tungesvik, Alexandre ; Perez, Lia ; Gatenby, Robert A ; Gillies, Robert J ; Baz, Rachid ; Meads, Mark B ; Shain, Kenneth H ; Silva, Ariosto S ; Zhang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-3828ab02ea830db7e4cd9c4e228ad14e8d25605f8fad96e425cd19bba988de723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Antineoplastic Agents</topic><topic>Humans</topic><topic>Microscopy - methods</topic><topic>Neoplasms - diagnostic imaging</topic><topic>Neoplasms - drug therapy</topic><topic>Original Papers</topic><topic>Precision Medicine</topic><topic>Software</topic><topic>Time-Lapse Imaging</topic><topic>Tumor Microenvironment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Qibing</creatorcontrib><creatorcontrib>Sudalagunta, Praneeth</creatorcontrib><creatorcontrib>Silva, Maria C</creatorcontrib><creatorcontrib>Canevarolo, Rafael R</creatorcontrib><creatorcontrib>Zhao, Xiaohong</creatorcontrib><creatorcontrib>Ahmed, Khandakar Tanvir</creatorcontrib><creatorcontrib>Alugubelli, Raghunandan Reddy</creatorcontrib><creatorcontrib>DeAvila, Gabriel</creatorcontrib><creatorcontrib>Tungesvik, Alexandre</creatorcontrib><creatorcontrib>Perez, Lia</creatorcontrib><creatorcontrib>Gatenby, Robert A</creatorcontrib><creatorcontrib>Gillies, Robert J</creatorcontrib><creatorcontrib>Baz, Rachid</creatorcontrib><creatorcontrib>Meads, Mark B</creatorcontrib><creatorcontrib>Shain, Kenneth H</creatorcontrib><creatorcontrib>Silva, Ariosto S</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiang, Qibing</au><au>Sudalagunta, Praneeth</au><au>Silva, Maria C</au><au>Canevarolo, Rafael R</au><au>Zhao, Xiaohong</au><au>Ahmed, Khandakar Tanvir</au><au>Alugubelli, Raghunandan Reddy</au><au>DeAvila, Gabriel</au><au>Tungesvik, Alexandre</au><au>Perez, Lia</au><au>Gatenby, Robert A</au><au>Gillies, Robert J</au><au>Baz, Rachid</au><au>Meads, Mark B</au><au>Shain, Kenneth H</au><au>Silva, Ariosto S</au><au>Zhang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CancerCellTracker: a brightfield time-lapse microscopy framework for cancer drug sensitivity estimation</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2022-08-10</date><risdate>2022</risdate><volume>38</volume><issue>16</issue><spage>4002</spage><epage>4010</epage><pages>4002-4010</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
Time-lapse microscopy is a powerful technique that relies on images of live cells cultured ex vivo that are captured at regular intervals of time to describe and quantify their behavior under certain experimental conditions. This imaging method has great potential in advancing the field of precision oncology by quantifying the response of cancer cells to various therapies and identifying the most efficacious treatment for a given patient. Digital image processing algorithms developed so far require high-resolution images involving very few cells originating from homogeneous cell line populations. We propose a novel framework that tracks cancer cells to capture their behavior and quantify cell viability to inform clinical decisions in a high-throughput manner.
Results
The brightfield microscopy images a large number of patient-derived cells in an ex vivo reconstruction of the tumor microenvironment treated with 31 drugs for up to 6 days. We developed a robust and user-friendly pipeline CancerCellTracker that detects cells in co-culture, tracks these cells across time and identifies cell death events using changes in cell attributes. We validated our computational pipeline by comparing the timing of cell death estimates by CancerCellTracker from brightfield images and a fluorescent channel featuring ethidium homodimer. We benchmarked our results using a state-of-the-art algorithm implemented in ImageJ and previously published in the literature. We highlighted CancerCellTracker’s efficiency in estimating the percentage of live cells in the presence of bone marrow stromal cells.
Availability and implementation
https://github.com/compbiolabucf/CancerCellTracker.
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>35751591</pmid><doi>10.1093/bioinformatics/btac417</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3605-9373</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2022-08, Vol.38 (16), p.4002-4010 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9991899 |
source | Oxford Journals Open Access Collection |
subjects | Algorithms Antineoplastic Agents Humans Microscopy - methods Neoplasms - diagnostic imaging Neoplasms - drug therapy Original Papers Precision Medicine Software Time-Lapse Imaging Tumor Microenvironment |
title | CancerCellTracker: a brightfield time-lapse microscopy framework for cancer drug sensitivity estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A52%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CancerCellTracker:%20a%20brightfield%20time-lapse%20microscopy%20framework%20for%20cancer%20drug%20sensitivity%20estimation&rft.jtitle=Bioinformatics&rft.au=Jiang,%20Qibing&rft.date=2022-08-10&rft.volume=38&rft.issue=16&rft.spage=4002&rft.epage=4010&rft.pages=4002-4010&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btac417&rft_dat=%3Cproquest_TOX%3E2681045289%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2681045289&rft_id=info:pmid/35751591&rft_oup_id=10.1093/bioinformatics/btac417&rfr_iscdi=true |