SPR-1/CoREST facilitates the maternal epigenetic reprogramming of the histone demethylase SPR-5/LSD1

Abstract Maternal reprogramming of histone methylation is critical for reestablishing totipotency in the zygote, but how histone-modifying enzymes are regulated during maternal reprogramming is not well characterized. To address this gap, we asked whether maternal reprogramming by the H3K4me1/2 deme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics (Austin) 2023-03, Vol.223 (3)
Hauptverfasser: Carpenter, Brandon S, Scott, Alyssa, Goldin, Robert, Chavez, Sindy R, Rodriguez, Juan D, Myrick, Dexter A, Curlee, Marcus, Schmeichel, Karen L, Katz, David J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Genetics (Austin)
container_volume 223
creator Carpenter, Brandon S
Scott, Alyssa
Goldin, Robert
Chavez, Sindy R
Rodriguez, Juan D
Myrick, Dexter A
Curlee, Marcus
Schmeichel, Karen L
Katz, David J
description Abstract Maternal reprogramming of histone methylation is critical for reestablishing totipotency in the zygote, but how histone-modifying enzymes are regulated during maternal reprogramming is not well characterized. To address this gap, we asked whether maternal reprogramming by the H3K4me1/2 demethylase SPR-5/LSD1/KDM1A, is regulated by the chromatin co-repressor protein, SPR-1/CoREST, in Caenorhabditis elegans and mice. In C. elegans, SPR-5 functions as part of a reprogramming switch together with the H3K9 methyltransferase MET-2. By examining germline development, fertility, and gene expression in double mutants between spr-1 and met-2, as well as fertility in double mutants between spr-1 and spr-5, we find that loss of SPR-1 results in a partial loss of SPR-5 maternal reprogramming function. In mice, we generated a separation of function Lsd1 M448V point mutation that compromises CoREST binding, but only slightly affects LSD1 demethylase activity. When maternal LSD1 in the oocyte is derived exclusively from this allele, the progeny phenocopy the increased perinatal lethality that we previously observed when LSD1 was reduced maternally. Together, these data are consistent with CoREST having a conserved function in facilitating maternal LSD1 epigenetic reprogramming. Carpenter, Scott et al. use C. elegans and mouse to investigate whether chromatin co-repressor protein SPR-1/CoREST functions in the maternal epigenetic reprogramming carried out by histone demethylase SPR-5/LSD1. They provide mechanistic insight into how maternal LSD1 reprogramming is regulated, demonstrating that CoREST has a conserved function helping LSD1 more efficiently reprogram chromatin maternally. In addition, they provide further evidence of a novel paradigm where defects in maternal LSD1 reprogramming at fertilization in mice can lead to phenotypes that manifest postnatally.
doi_str_mv 10.1093/genetics/iyad005
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9991509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/genetics/iyad005</oup_id><sourcerecordid>2955235946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3643-ad57717013caa6140c25f5b4485217b558cebc3eb03d869e9db18962126c0943</originalsourceid><addsrcrecordid>eNqFkd1LwzAUxYMofkzffZKCL4LMJU2TNi-CzPkBA8XtPaTp7RZpm5q0wv57MzdFffEpF_K75557D0KnBF8RLOhoAQ10RvuRWakCY7aDDolI6DDmlOz-qA_QkfevGGMuWLaPDijnjKUJP0TF7PllSEZj-zKZzaNSaVOZTnXgo24JUR0q16gqgtZsZ0UOWmcXTtW1aRaRLT_BpfGdbSAqoIZuuaqUh2itzEbT2S05RnulqjycbN8Bmt9N5uOH4fTp_nF8Mx1qyoNTVbA0JSkmVCvFSYJ1zEqWJ0nGYpLmjGUack0hx7TIuABR5CQTPCYx1zisOkDXG9m2z2soNDSdU5VsnamVW0mrjPz905ilXNh3KYQgLNxzgC62As6-9eA7WRuvoapUA7b3Mk558EdiTAN6_gd9tf36VIESjMWUiYQHCm8o7az3DspvMwTLdYLyK0G5TTC0nP1c4rvhK7IAXG4A27f_y30AOwaotw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2955235946</pqid></control><display><type>article</type><title>SPR-1/CoREST facilitates the maternal epigenetic reprogramming of the histone demethylase SPR-5/LSD1</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Carpenter, Brandon S ; Scott, Alyssa ; Goldin, Robert ; Chavez, Sindy R ; Rodriguez, Juan D ; Myrick, Dexter A ; Curlee, Marcus ; Schmeichel, Karen L ; Katz, David J</creator><contributor>Rando, O</contributor><creatorcontrib>Carpenter, Brandon S ; Scott, Alyssa ; Goldin, Robert ; Chavez, Sindy R ; Rodriguez, Juan D ; Myrick, Dexter A ; Curlee, Marcus ; Schmeichel, Karen L ; Katz, David J ; Rando, O</creatorcontrib><description>Abstract Maternal reprogramming of histone methylation is critical for reestablishing totipotency in the zygote, but how histone-modifying enzymes are regulated during maternal reprogramming is not well characterized. To address this gap, we asked whether maternal reprogramming by the H3K4me1/2 demethylase SPR-5/LSD1/KDM1A, is regulated by the chromatin co-repressor protein, SPR-1/CoREST, in Caenorhabditis elegans and mice. In C. elegans, SPR-5 functions as part of a reprogramming switch together with the H3K9 methyltransferase MET-2. By examining germline development, fertility, and gene expression in double mutants between spr-1 and met-2, as well as fertility in double mutants between spr-1 and spr-5, we find that loss of SPR-1 results in a partial loss of SPR-5 maternal reprogramming function. In mice, we generated a separation of function Lsd1 M448V point mutation that compromises CoREST binding, but only slightly affects LSD1 demethylase activity. When maternal LSD1 in the oocyte is derived exclusively from this allele, the progeny phenocopy the increased perinatal lethality that we previously observed when LSD1 was reduced maternally. Together, these data are consistent with CoREST having a conserved function in facilitating maternal LSD1 epigenetic reprogramming. Carpenter, Scott et al. use C. elegans and mouse to investigate whether chromatin co-repressor protein SPR-1/CoREST functions in the maternal epigenetic reprogramming carried out by histone demethylase SPR-5/LSD1. They provide mechanistic insight into how maternal LSD1 reprogramming is regulated, demonstrating that CoREST has a conserved function helping LSD1 more efficiently reprogram chromatin maternally. In addition, they provide further evidence of a novel paradigm where defects in maternal LSD1 reprogramming at fertilization in mice can lead to phenotypes that manifest postnatally.</description><identifier>ISSN: 1943-2631</identifier><identifier>ISSN: 0016-6731</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1093/genetics/iyad005</identifier><identifier>PMID: 36655746</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Animals ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - metabolism ; Chromatin ; Epigenesis, Genetic ; Epigenetics ; Fertility ; Gametocytes ; Gene expression ; Histone Demethylases - genetics ; Histone Demethylases - metabolism ; Histones ; Histones - genetics ; Histones - metabolism ; Investigation ; Lethality ; Methylation ; Methyltransferase ; Mice ; Mutants ; Point mutation ; Surface Plasmon Resonance ; Zygotes</subject><ispartof>Genetics (Austin), 2023-03, Vol.223 (3)</ispartof><rights>Published by Oxford University Press on behalf of the Genetics Society of America 2023. 2023</rights><rights>Published by Oxford University Press on behalf of the Genetics Society of America 2023.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3643-ad57717013caa6140c25f5b4485217b558cebc3eb03d869e9db18962126c0943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1584,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36655746$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Rando, O</contributor><creatorcontrib>Carpenter, Brandon S</creatorcontrib><creatorcontrib>Scott, Alyssa</creatorcontrib><creatorcontrib>Goldin, Robert</creatorcontrib><creatorcontrib>Chavez, Sindy R</creatorcontrib><creatorcontrib>Rodriguez, Juan D</creatorcontrib><creatorcontrib>Myrick, Dexter A</creatorcontrib><creatorcontrib>Curlee, Marcus</creatorcontrib><creatorcontrib>Schmeichel, Karen L</creatorcontrib><creatorcontrib>Katz, David J</creatorcontrib><title>SPR-1/CoREST facilitates the maternal epigenetic reprogramming of the histone demethylase SPR-5/LSD1</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Abstract Maternal reprogramming of histone methylation is critical for reestablishing totipotency in the zygote, but how histone-modifying enzymes are regulated during maternal reprogramming is not well characterized. To address this gap, we asked whether maternal reprogramming by the H3K4me1/2 demethylase SPR-5/LSD1/KDM1A, is regulated by the chromatin co-repressor protein, SPR-1/CoREST, in Caenorhabditis elegans and mice. In C. elegans, SPR-5 functions as part of a reprogramming switch together with the H3K9 methyltransferase MET-2. By examining germline development, fertility, and gene expression in double mutants between spr-1 and met-2, as well as fertility in double mutants between spr-1 and spr-5, we find that loss of SPR-1 results in a partial loss of SPR-5 maternal reprogramming function. In mice, we generated a separation of function Lsd1 M448V point mutation that compromises CoREST binding, but only slightly affects LSD1 demethylase activity. When maternal LSD1 in the oocyte is derived exclusively from this allele, the progeny phenocopy the increased perinatal lethality that we previously observed when LSD1 was reduced maternally. Together, these data are consistent with CoREST having a conserved function in facilitating maternal LSD1 epigenetic reprogramming. Carpenter, Scott et al. use C. elegans and mouse to investigate whether chromatin co-repressor protein SPR-1/CoREST functions in the maternal epigenetic reprogramming carried out by histone demethylase SPR-5/LSD1. They provide mechanistic insight into how maternal LSD1 reprogramming is regulated, demonstrating that CoREST has a conserved function helping LSD1 more efficiently reprogram chromatin maternally. In addition, they provide further evidence of a novel paradigm where defects in maternal LSD1 reprogramming at fertilization in mice can lead to phenotypes that manifest postnatally.</description><subject>Animals</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Chromatin</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetics</subject><subject>Fertility</subject><subject>Gametocytes</subject><subject>Gene expression</subject><subject>Histone Demethylases - genetics</subject><subject>Histone Demethylases - metabolism</subject><subject>Histones</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Investigation</subject><subject>Lethality</subject><subject>Methylation</subject><subject>Methyltransferase</subject><subject>Mice</subject><subject>Mutants</subject><subject>Point mutation</subject><subject>Surface Plasmon Resonance</subject><subject>Zygotes</subject><issn>1943-2631</issn><issn>0016-6731</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkd1LwzAUxYMofkzffZKCL4LMJU2TNi-CzPkBA8XtPaTp7RZpm5q0wv57MzdFffEpF_K75557D0KnBF8RLOhoAQ10RvuRWakCY7aDDolI6DDmlOz-qA_QkfevGGMuWLaPDijnjKUJP0TF7PllSEZj-zKZzaNSaVOZTnXgo24JUR0q16gqgtZsZ0UOWmcXTtW1aRaRLT_BpfGdbSAqoIZuuaqUh2itzEbT2S05RnulqjycbN8Bmt9N5uOH4fTp_nF8Mx1qyoNTVbA0JSkmVCvFSYJ1zEqWJ0nGYpLmjGUack0hx7TIuABR5CQTPCYx1zisOkDXG9m2z2soNDSdU5VsnamVW0mrjPz905ilXNh3KYQgLNxzgC62As6-9eA7WRuvoapUA7b3Mk558EdiTAN6_gd9tf36VIESjMWUiYQHCm8o7az3DspvMwTLdYLyK0G5TTC0nP1c4rvhK7IAXG4A27f_y30AOwaotw</recordid><startdate>20230302</startdate><enddate>20230302</enddate><creator>Carpenter, Brandon S</creator><creator>Scott, Alyssa</creator><creator>Goldin, Robert</creator><creator>Chavez, Sindy R</creator><creator>Rodriguez, Juan D</creator><creator>Myrick, Dexter A</creator><creator>Curlee, Marcus</creator><creator>Schmeichel, Karen L</creator><creator>Katz, David J</creator><general>Oxford University Press</general><general>Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230302</creationdate><title>SPR-1/CoREST facilitates the maternal epigenetic reprogramming of the histone demethylase SPR-5/LSD1</title><author>Carpenter, Brandon S ; Scott, Alyssa ; Goldin, Robert ; Chavez, Sindy R ; Rodriguez, Juan D ; Myrick, Dexter A ; Curlee, Marcus ; Schmeichel, Karen L ; Katz, David J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3643-ad57717013caa6140c25f5b4485217b558cebc3eb03d869e9db18962126c0943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Chromatin</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetics</topic><topic>Fertility</topic><topic>Gametocytes</topic><topic>Gene expression</topic><topic>Histone Demethylases - genetics</topic><topic>Histone Demethylases - metabolism</topic><topic>Histones</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Investigation</topic><topic>Lethality</topic><topic>Methylation</topic><topic>Methyltransferase</topic><topic>Mice</topic><topic>Mutants</topic><topic>Point mutation</topic><topic>Surface Plasmon Resonance</topic><topic>Zygotes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carpenter, Brandon S</creatorcontrib><creatorcontrib>Scott, Alyssa</creatorcontrib><creatorcontrib>Goldin, Robert</creatorcontrib><creatorcontrib>Chavez, Sindy R</creatorcontrib><creatorcontrib>Rodriguez, Juan D</creatorcontrib><creatorcontrib>Myrick, Dexter A</creatorcontrib><creatorcontrib>Curlee, Marcus</creatorcontrib><creatorcontrib>Schmeichel, Karen L</creatorcontrib><creatorcontrib>Katz, David J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carpenter, Brandon S</au><au>Scott, Alyssa</au><au>Goldin, Robert</au><au>Chavez, Sindy R</au><au>Rodriguez, Juan D</au><au>Myrick, Dexter A</au><au>Curlee, Marcus</au><au>Schmeichel, Karen L</au><au>Katz, David J</au><au>Rando, O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SPR-1/CoREST facilitates the maternal epigenetic reprogramming of the histone demethylase SPR-5/LSD1</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2023-03-02</date><risdate>2023</risdate><volume>223</volume><issue>3</issue><issn>1943-2631</issn><issn>0016-6731</issn><eissn>1943-2631</eissn><abstract>Abstract Maternal reprogramming of histone methylation is critical for reestablishing totipotency in the zygote, but how histone-modifying enzymes are regulated during maternal reprogramming is not well characterized. To address this gap, we asked whether maternal reprogramming by the H3K4me1/2 demethylase SPR-5/LSD1/KDM1A, is regulated by the chromatin co-repressor protein, SPR-1/CoREST, in Caenorhabditis elegans and mice. In C. elegans, SPR-5 functions as part of a reprogramming switch together with the H3K9 methyltransferase MET-2. By examining germline development, fertility, and gene expression in double mutants between spr-1 and met-2, as well as fertility in double mutants between spr-1 and spr-5, we find that loss of SPR-1 results in a partial loss of SPR-5 maternal reprogramming function. In mice, we generated a separation of function Lsd1 M448V point mutation that compromises CoREST binding, but only slightly affects LSD1 demethylase activity. When maternal LSD1 in the oocyte is derived exclusively from this allele, the progeny phenocopy the increased perinatal lethality that we previously observed when LSD1 was reduced maternally. Together, these data are consistent with CoREST having a conserved function in facilitating maternal LSD1 epigenetic reprogramming. Carpenter, Scott et al. use C. elegans and mouse to investigate whether chromatin co-repressor protein SPR-1/CoREST functions in the maternal epigenetic reprogramming carried out by histone demethylase SPR-5/LSD1. They provide mechanistic insight into how maternal LSD1 reprogramming is regulated, demonstrating that CoREST has a conserved function helping LSD1 more efficiently reprogram chromatin maternally. In addition, they provide further evidence of a novel paradigm where defects in maternal LSD1 reprogramming at fertilization in mice can lead to phenotypes that manifest postnatally.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>36655746</pmid><doi>10.1093/genetics/iyad005</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-2631
ispartof Genetics (Austin), 2023-03, Vol.223 (3)
issn 1943-2631
0016-6731
1943-2631
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9991509
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Caenorhabditis elegans - genetics
Caenorhabditis elegans - metabolism
Chromatin
Epigenesis, Genetic
Epigenetics
Fertility
Gametocytes
Gene expression
Histone Demethylases - genetics
Histone Demethylases - metabolism
Histones
Histones - genetics
Histones - metabolism
Investigation
Lethality
Methylation
Methyltransferase
Mice
Mutants
Point mutation
Surface Plasmon Resonance
Zygotes
title SPR-1/CoREST facilitates the maternal epigenetic reprogramming of the histone demethylase SPR-5/LSD1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SPR-1/CoREST%20facilitates%20the%20maternal%20epigenetic%20reprogramming%20of%20the%20histone%20demethylase%20SPR-5/LSD1&rft.jtitle=Genetics%20(Austin)&rft.au=Carpenter,%20Brandon%20S&rft.date=2023-03-02&rft.volume=223&rft.issue=3&rft.issn=1943-2631&rft.eissn=1943-2631&rft_id=info:doi/10.1093/genetics/iyad005&rft_dat=%3Cproquest_pubme%3E2955235946%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2955235946&rft_id=info:pmid/36655746&rft_oup_id=10.1093/genetics/iyad005&rfr_iscdi=true