A synergistic Rh(I)/organoboron-catalysed site-selective carbohydrate functionalization that involves multiple stereocontrol
Site-selective functionalization is a core synthetic strategy that has broad implications in organic synthesis. Particularly, exploiting chiral catalysis to control site selectivity in complex carbohydrate functionalizations has emerged as a leading method to unravel unprecedented routes into biolog...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2023-03, Vol.15 (3), p.424-435 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 435 |
---|---|
container_issue | 3 |
container_start_page | 424 |
container_title | Nature chemistry |
container_volume | 15 |
creator | Rao, V. U. Bhaskara Wang, Caiming Demarque, Daniel P. Grassin, Corentin Otte, Felix Merten, Christian Strohmann, Carsten Loh, Charles C. J. |
description | Site-selective functionalization is a core synthetic strategy that has broad implications in organic synthesis. Particularly, exploiting chiral catalysis to control site selectivity in complex carbohydrate functionalizations has emerged as a leading method to unravel unprecedented routes into biologically relevant glycosides. However, robust catalytic systems available to overcome multiple facets of stereoselectivity challenges to this end still remain scarce. Here we report a synergistic chiral Rh(I)- and organoboron-catalysed protocol, which enables access into synthetically challenging but biologically relevant arylnaphthalene glycosides. Our method depicts the employment of chiral Rh(I) catalysis in site-selective carbohydrate functionalization and showcases the utility of boronic acid as a compatible co-catalyst. Crucial to the success of our method is the judicious choice of a suitable organoboron catalyst. We also determine that exquisite multiple aspects of stereocontrol, including enantio-, diastereo-, regio- and anomeric control and dynamic kinetic resolution, are concomitantly operative.
Asymmetric systems for catalytic carbohydrate functionalization are mostly limited to chiral copper complexes and organocatalysts. Now, a synergistic chiral Rh(I)- and organoboron-catalysed site-selective functionalization of carbohydrate polyols has been developed, giving stereocontrolled access to biologically relevant arylhydronaphthalene glycosides. Enantio-, diastereo-, regio- and anomeric control and dynamic kinetic resolution were found to be concomitantly operative. |
doi_str_mv | 10.1038/s41557-022-01110-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9986112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2759958311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-80fb6a0297ed75fe00cabca12e40e72ac97b3a8e51ad904d7c658d43a37eb1383</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEoqXwBTigSFzaQ6gd27FzQaoqCpUqISE4WxNnsuvKay-2s9Ku-uHxsmX5c-Dkkec3b_z8quo1Je8oYeoycSqEbEjbNoRSSprdk-qUSiEaznj_9FgzclK9SOmekE4w2j2vTlgnlOCcnVYPV3XaeowLm7I19Zfl-e3FZYgL8GEIMfjGQAa3TTjWyWZsEjo02W6wNhCHsNyOETLW0-zLbfDg7A72RZ2XkGvrN8FtMNWr2WW7dlinjBGDCT7H4F5WzyZwCV89nmfVt5sPX68_NXefP95eX901hkueG0WmoQPS9hJHKSYkxMBggLbICcoWTC8HBgoFhbEnfJSm2Bs5AyZxoEyxs-r9QXc9DyscDZbt4PQ62hXErQ5g9d8db5d6ETa671VHaVsEzh8FYvg-Y8p6ZZNB58BjmJNupeh7oRilBX37D3of5lg-Zk-pVvFiiRWqPVAmhpQiTsfHUKL34epDuLqEq3-Gq3dl6M2fNo4jv9IsADsAqbT8AuPv3f-R_QHT27Uk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2782844743</pqid></control><display><type>article</type><title>A synergistic Rh(I)/organoboron-catalysed site-selective carbohydrate functionalization that involves multiple stereocontrol</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Rao, V. U. Bhaskara ; Wang, Caiming ; Demarque, Daniel P. ; Grassin, Corentin ; Otte, Felix ; Merten, Christian ; Strohmann, Carsten ; Loh, Charles C. J.</creator><creatorcontrib>Rao, V. U. Bhaskara ; Wang, Caiming ; Demarque, Daniel P. ; Grassin, Corentin ; Otte, Felix ; Merten, Christian ; Strohmann, Carsten ; Loh, Charles C. J.</creatorcontrib><description>Site-selective functionalization is a core synthetic strategy that has broad implications in organic synthesis. Particularly, exploiting chiral catalysis to control site selectivity in complex carbohydrate functionalizations has emerged as a leading method to unravel unprecedented routes into biologically relevant glycosides. However, robust catalytic systems available to overcome multiple facets of stereoselectivity challenges to this end still remain scarce. Here we report a synergistic chiral Rh(I)- and organoboron-catalysed protocol, which enables access into synthetically challenging but biologically relevant arylnaphthalene glycosides. Our method depicts the employment of chiral Rh(I) catalysis in site-selective carbohydrate functionalization and showcases the utility of boronic acid as a compatible co-catalyst. Crucial to the success of our method is the judicious choice of a suitable organoboron catalyst. We also determine that exquisite multiple aspects of stereocontrol, including enantio-, diastereo-, regio- and anomeric control and dynamic kinetic resolution, are concomitantly operative.
Asymmetric systems for catalytic carbohydrate functionalization are mostly limited to chiral copper complexes and organocatalysts. Now, a synergistic chiral Rh(I)- and organoboron-catalysed site-selective functionalization of carbohydrate polyols has been developed, giving stereocontrolled access to biologically relevant arylhydronaphthalene glycosides. Enantio-, diastereo-, regio- and anomeric control and dynamic kinetic resolution were found to be concomitantly operative.</description><identifier>ISSN: 1755-4330</identifier><identifier>ISSN: 1755-4349</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-022-01110-z</identifier><identifier>PMID: 36585443</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/403/931 ; 639/638/403/933 ; 639/638/549/933 ; 639/638/77/883 ; Analytical Chemistry ; Biochemistry ; Carbohydrates ; Catalysis ; Catalysts ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Copper compounds ; Glycosides ; Inorganic Chemistry ; Organic Chemistry ; Physical Chemistry ; Polyols ; Rhodium ; Selectivity ; Stereoselectivity</subject><ispartof>Nature chemistry, 2023-03, Vol.15 (3), p.424-435</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-80fb6a0297ed75fe00cabca12e40e72ac97b3a8e51ad904d7c658d43a37eb1383</citedby><cites>FETCH-LOGICAL-c474t-80fb6a0297ed75fe00cabca12e40e72ac97b3a8e51ad904d7c658d43a37eb1383</cites><orcidid>0000-0001-6970-1989 ; 0000-0002-7605-0878 ; 0000-0002-4106-1905 ; 0000-0002-4787-2135 ; 0000-0002-3488-687X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41557-022-01110-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41557-022-01110-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36585443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rao, V. U. Bhaskara</creatorcontrib><creatorcontrib>Wang, Caiming</creatorcontrib><creatorcontrib>Demarque, Daniel P.</creatorcontrib><creatorcontrib>Grassin, Corentin</creatorcontrib><creatorcontrib>Otte, Felix</creatorcontrib><creatorcontrib>Merten, Christian</creatorcontrib><creatorcontrib>Strohmann, Carsten</creatorcontrib><creatorcontrib>Loh, Charles C. J.</creatorcontrib><title>A synergistic Rh(I)/organoboron-catalysed site-selective carbohydrate functionalization that involves multiple stereocontrol</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>Nat Chem</addtitle><description>Site-selective functionalization is a core synthetic strategy that has broad implications in organic synthesis. Particularly, exploiting chiral catalysis to control site selectivity in complex carbohydrate functionalizations has emerged as a leading method to unravel unprecedented routes into biologically relevant glycosides. However, robust catalytic systems available to overcome multiple facets of stereoselectivity challenges to this end still remain scarce. Here we report a synergistic chiral Rh(I)- and organoboron-catalysed protocol, which enables access into synthetically challenging but biologically relevant arylnaphthalene glycosides. Our method depicts the employment of chiral Rh(I) catalysis in site-selective carbohydrate functionalization and showcases the utility of boronic acid as a compatible co-catalyst. Crucial to the success of our method is the judicious choice of a suitable organoboron catalyst. We also determine that exquisite multiple aspects of stereocontrol, including enantio-, diastereo-, regio- and anomeric control and dynamic kinetic resolution, are concomitantly operative.
Asymmetric systems for catalytic carbohydrate functionalization are mostly limited to chiral copper complexes and organocatalysts. Now, a synergistic chiral Rh(I)- and organoboron-catalysed site-selective functionalization of carbohydrate polyols has been developed, giving stereocontrolled access to biologically relevant arylhydronaphthalene glycosides. Enantio-, diastereo-, regio- and anomeric control and dynamic kinetic resolution were found to be concomitantly operative.</description><subject>639/638/403/931</subject><subject>639/638/403/933</subject><subject>639/638/549/933</subject><subject>639/638/77/883</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Carbohydrates</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Copper compounds</subject><subject>Glycosides</subject><subject>Inorganic Chemistry</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Polyols</subject><subject>Rhodium</subject><subject>Selectivity</subject><subject>Stereoselectivity</subject><issn>1755-4330</issn><issn>1755-4349</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU9v1DAQxSMEoqXwBTigSFzaQ6gd27FzQaoqCpUqISE4WxNnsuvKay-2s9Ku-uHxsmX5c-Dkkec3b_z8quo1Je8oYeoycSqEbEjbNoRSSprdk-qUSiEaznj_9FgzclK9SOmekE4w2j2vTlgnlOCcnVYPV3XaeowLm7I19Zfl-e3FZYgL8GEIMfjGQAa3TTjWyWZsEjo02W6wNhCHsNyOETLW0-zLbfDg7A72RZ2XkGvrN8FtMNWr2WW7dlinjBGDCT7H4F5WzyZwCV89nmfVt5sPX68_NXefP95eX901hkueG0WmoQPS9hJHKSYkxMBggLbICcoWTC8HBgoFhbEnfJSm2Bs5AyZxoEyxs-r9QXc9DyscDZbt4PQ62hXErQ5g9d8db5d6ETa671VHaVsEzh8FYvg-Y8p6ZZNB58BjmJNupeh7oRilBX37D3of5lg-Zk-pVvFiiRWqPVAmhpQiTsfHUKL34epDuLqEq3-Gq3dl6M2fNo4jv9IsADsAqbT8AuPv3f-R_QHT27Uk</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Rao, V. U. Bhaskara</creator><creator>Wang, Caiming</creator><creator>Demarque, Daniel P.</creator><creator>Grassin, Corentin</creator><creator>Otte, Felix</creator><creator>Merten, Christian</creator><creator>Strohmann, Carsten</creator><creator>Loh, Charles C. J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6970-1989</orcidid><orcidid>https://orcid.org/0000-0002-7605-0878</orcidid><orcidid>https://orcid.org/0000-0002-4106-1905</orcidid><orcidid>https://orcid.org/0000-0002-4787-2135</orcidid><orcidid>https://orcid.org/0000-0002-3488-687X</orcidid></search><sort><creationdate>20230301</creationdate><title>A synergistic Rh(I)/organoboron-catalysed site-selective carbohydrate functionalization that involves multiple stereocontrol</title><author>Rao, V. U. Bhaskara ; Wang, Caiming ; Demarque, Daniel P. ; Grassin, Corentin ; Otte, Felix ; Merten, Christian ; Strohmann, Carsten ; Loh, Charles C. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-80fb6a0297ed75fe00cabca12e40e72ac97b3a8e51ad904d7c658d43a37eb1383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/638/403/931</topic><topic>639/638/403/933</topic><topic>639/638/549/933</topic><topic>639/638/77/883</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Carbohydrates</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Copper compounds</topic><topic>Glycosides</topic><topic>Inorganic Chemistry</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Polyols</topic><topic>Rhodium</topic><topic>Selectivity</topic><topic>Stereoselectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rao, V. U. Bhaskara</creatorcontrib><creatorcontrib>Wang, Caiming</creatorcontrib><creatorcontrib>Demarque, Daniel P.</creatorcontrib><creatorcontrib>Grassin, Corentin</creatorcontrib><creatorcontrib>Otte, Felix</creatorcontrib><creatorcontrib>Merten, Christian</creatorcontrib><creatorcontrib>Strohmann, Carsten</creatorcontrib><creatorcontrib>Loh, Charles C. J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rao, V. U. Bhaskara</au><au>Wang, Caiming</au><au>Demarque, Daniel P.</au><au>Grassin, Corentin</au><au>Otte, Felix</au><au>Merten, Christian</au><au>Strohmann, Carsten</au><au>Loh, Charles C. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A synergistic Rh(I)/organoboron-catalysed site-selective carbohydrate functionalization that involves multiple stereocontrol</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><addtitle>Nat Chem</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>15</volume><issue>3</issue><spage>424</spage><epage>435</epage><pages>424-435</pages><issn>1755-4330</issn><issn>1755-4349</issn><eissn>1755-4349</eissn><abstract>Site-selective functionalization is a core synthetic strategy that has broad implications in organic synthesis. Particularly, exploiting chiral catalysis to control site selectivity in complex carbohydrate functionalizations has emerged as a leading method to unravel unprecedented routes into biologically relevant glycosides. However, robust catalytic systems available to overcome multiple facets of stereoselectivity challenges to this end still remain scarce. Here we report a synergistic chiral Rh(I)- and organoboron-catalysed protocol, which enables access into synthetically challenging but biologically relevant arylnaphthalene glycosides. Our method depicts the employment of chiral Rh(I) catalysis in site-selective carbohydrate functionalization and showcases the utility of boronic acid as a compatible co-catalyst. Crucial to the success of our method is the judicious choice of a suitable organoboron catalyst. We also determine that exquisite multiple aspects of stereocontrol, including enantio-, diastereo-, regio- and anomeric control and dynamic kinetic resolution, are concomitantly operative.
Asymmetric systems for catalytic carbohydrate functionalization are mostly limited to chiral copper complexes and organocatalysts. Now, a synergistic chiral Rh(I)- and organoboron-catalysed site-selective functionalization of carbohydrate polyols has been developed, giving stereocontrolled access to biologically relevant arylhydronaphthalene glycosides. Enantio-, diastereo-, regio- and anomeric control and dynamic kinetic resolution were found to be concomitantly operative.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36585443</pmid><doi>10.1038/s41557-022-01110-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6970-1989</orcidid><orcidid>https://orcid.org/0000-0002-7605-0878</orcidid><orcidid>https://orcid.org/0000-0002-4106-1905</orcidid><orcidid>https://orcid.org/0000-0002-4787-2135</orcidid><orcidid>https://orcid.org/0000-0002-3488-687X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2023-03, Vol.15 (3), p.424-435 |
issn | 1755-4330 1755-4349 1755-4349 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9986112 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 639/638/403/931 639/638/403/933 639/638/549/933 639/638/77/883 Analytical Chemistry Biochemistry Carbohydrates Catalysis Catalysts Chemical synthesis Chemistry Chemistry and Materials Science Chemistry/Food Science Copper compounds Glycosides Inorganic Chemistry Organic Chemistry Physical Chemistry Polyols Rhodium Selectivity Stereoselectivity |
title | A synergistic Rh(I)/organoboron-catalysed site-selective carbohydrate functionalization that involves multiple stereocontrol |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A58%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20synergistic%20Rh(I)/organoboron-catalysed%20site-selective%20carbohydrate%20functionalization%20that%20involves%20multiple%20stereocontrol&rft.jtitle=Nature%20chemistry&rft.au=Rao,%20V.%20U.%20Bhaskara&rft.date=2023-03-01&rft.volume=15&rft.issue=3&rft.spage=424&rft.epage=435&rft.pages=424-435&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-022-01110-z&rft_dat=%3Cproquest_pubme%3E2759958311%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2782844743&rft_id=info:pmid/36585443&rfr_iscdi=true |