Covariation of the amplitude and latency of motor evoked potentials elicited by transcranial magnetic stimulation in a resting hand muscle

Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique used to study human neurophysiology. A single TMS pulse delivered to the primary motor cortex can elicit a motor evoked potential (MEP) in a target muscle. MEP amplitude is a measure of corticospinal excitability a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental brain research 2023-03, Vol.241 (3), p.927-936
Hauptverfasser: Vallence, A. M., Rurak, B. K., Fujiyama, H., Hammond, G. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 936
container_issue 3
container_start_page 927
container_title Experimental brain research
container_volume 241
creator Vallence, A. M.
Rurak, B. K.
Fujiyama, H.
Hammond, G. R.
description Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique used to study human neurophysiology. A single TMS pulse delivered to the primary motor cortex can elicit a motor evoked potential (MEP) in a target muscle. MEP amplitude is a measure of corticospinal excitability and MEP latency is a measure of the time taken for intracortical processing, corticofugal conduction, spinal processing, and neuromuscular transmission. Although MEP amplitude is known to vary across trials with constant stimulus intensity, little is known about MEP latency variation. To investigate MEP amplitude and latency variation at the individual level, we scored single-pulse MEP amplitude and latency in a resting hand muscle from two datasets. MEP latency varied from trial to trial in individual participants with a median range of 3.9 ms. Shorter MEP latencies were associated with larger MEP amplitudes for most individuals (median r  = − 0.47), showing that latency and amplitude are jointly determined by the excitability of the corticospinal system when TMS is delivered. TMS delivered during heightened excitability could discharge a greater number of cortico-cortical and corticospinal cells, increasing the amplitude and, by recurrent activation of corticospinal cells, the number of descending indirect waves. An increase in the amplitude and number of indirect waves would progressively recruit larger spinal motor neurons with large-diameter fast-conducting fibers, which would shorten MEP onset latency and increase MEP amplitude. In addition to MEP amplitude variability, understanding MEP latency variability is important given that these parameters are used to help characterize pathophysiology of movement disorders.
doi_str_mv 10.1007/s00221-023-06575-z
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9985579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A739664708</galeid><sourcerecordid>A739664708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-91bbcd75addb8ca805239f99026130559d68ab5b1c6c77a87374d0009922d6013</originalsourceid><addsrcrecordid>eNp9kl2L1DAUhoso7rr6B7yQgCB60TUfTdLcCMvgx8KC4Md1SNO0kzVNxiQdnP0J_mpTZ93dEZFC2p7znPdwTt6qeorgKYKQv04QYoxqiEkNGeW0vrpXHaOG4BohyO5XxxCipm5aJI6qRyldLr-Ew4fVEWEtQqxlx9XPVdiqaFW2wYMwgLw2QE0bZ_Pcly_fA6ey8Xq3JKeQQwRmG76ZHmxCiWerXALGWW1ziXU7kKPySZejZMCkRm-y1SBlO81u38V6oEA0JeRHsF5aTHPSzjyuHgxFzTy5fp9UX9-9_bL6UF98fH--OruoNYMs1wJ1ne45VX3ftVq1kGIiBiEgZohASkXPWtXRDmmmOVctJ7zpIYRCYNwziMhJ9Wavu5m7yfS6TBGVk5toJxV3MigrDzPeruUYtlKIllIuisDLa4EYvs9lEDnZpI1zypswJ4l5gSikzdLr-V_oZZijL-MVqsWUEkHgLTUqZ6T1Qyh99SIqzzgRjDUctoU6_QdVnt5MVgdvBlviBwWvDgoKk82PPKo5JXn--dMh--IOuzbK5XUKbl5uLB2CeA_qGFKKZrhZHIJysaXc21IWW8rftpRXpejZ3ZXflPzxYQHIHkgl5UcTb_f0H9lfANjtyg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2782553930</pqid></control><display><type>article</type><title>Covariation of the amplitude and latency of motor evoked potentials elicited by transcranial magnetic stimulation in a resting hand muscle</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Vallence, A. M. ; Rurak, B. K. ; Fujiyama, H. ; Hammond, G. R.</creator><creatorcontrib>Vallence, A. M. ; Rurak, B. K. ; Fujiyama, H. ; Hammond, G. R.</creatorcontrib><description>Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique used to study human neurophysiology. A single TMS pulse delivered to the primary motor cortex can elicit a motor evoked potential (MEP) in a target muscle. MEP amplitude is a measure of corticospinal excitability and MEP latency is a measure of the time taken for intracortical processing, corticofugal conduction, spinal processing, and neuromuscular transmission. Although MEP amplitude is known to vary across trials with constant stimulus intensity, little is known about MEP latency variation. To investigate MEP amplitude and latency variation at the individual level, we scored single-pulse MEP amplitude and latency in a resting hand muscle from two datasets. MEP latency varied from trial to trial in individual participants with a median range of 3.9 ms. Shorter MEP latencies were associated with larger MEP amplitudes for most individuals (median r  = − 0.47), showing that latency and amplitude are jointly determined by the excitability of the corticospinal system when TMS is delivered. TMS delivered during heightened excitability could discharge a greater number of cortico-cortical and corticospinal cells, increasing the amplitude and, by recurrent activation of corticospinal cells, the number of descending indirect waves. An increase in the amplitude and number of indirect waves would progressively recruit larger spinal motor neurons with large-diameter fast-conducting fibers, which would shorten MEP onset latency and increase MEP amplitude. In addition to MEP amplitude variability, understanding MEP latency variability is important given that these parameters are used to help characterize pathophysiology of movement disorders.</description><identifier>ISSN: 0014-4819</identifier><identifier>EISSN: 1432-1106</identifier><identifier>DOI: 10.1007/s00221-023-06575-z</identifier><identifier>PMID: 36811686</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Biomedical and Life Sciences ; Biomedicine ; Cell activation ; Cortex (motor) ; Electromyography ; Evoked Potentials, Motor - physiology ; Excitability ; Humans ; Latency ; Magnetic brain stimulation ; Magnetic fields ; Motor Cortex - physiology ; Motor evoked potentials ; Motor neurons ; Movement disorders ; Muscle, Skeletal - physiology ; Muscles ; Neurology ; Neuromuscular junctions ; Neurophysiology ; Neurosciences ; Pyramidal tracts ; Research Article ; Transcranial magnetic stimulation ; Transcranial Magnetic Stimulation - methods</subject><ispartof>Experimental brain research, 2023-03, Vol.241 (3), p.927-936</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-91bbcd75addb8ca805239f99026130559d68ab5b1c6c77a87374d0009922d6013</citedby><cites>FETCH-LOGICAL-c606t-91bbcd75addb8ca805239f99026130559d68ab5b1c6c77a87374d0009922d6013</cites><orcidid>0000-0001-9190-6366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00221-023-06575-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00221-023-06575-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36811686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vallence, A. M.</creatorcontrib><creatorcontrib>Rurak, B. K.</creatorcontrib><creatorcontrib>Fujiyama, H.</creatorcontrib><creatorcontrib>Hammond, G. R.</creatorcontrib><title>Covariation of the amplitude and latency of motor evoked potentials elicited by transcranial magnetic stimulation in a resting hand muscle</title><title>Experimental brain research</title><addtitle>Exp Brain Res</addtitle><addtitle>Exp Brain Res</addtitle><description>Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique used to study human neurophysiology. A single TMS pulse delivered to the primary motor cortex can elicit a motor evoked potential (MEP) in a target muscle. MEP amplitude is a measure of corticospinal excitability and MEP latency is a measure of the time taken for intracortical processing, corticofugal conduction, spinal processing, and neuromuscular transmission. Although MEP amplitude is known to vary across trials with constant stimulus intensity, little is known about MEP latency variation. To investigate MEP amplitude and latency variation at the individual level, we scored single-pulse MEP amplitude and latency in a resting hand muscle from two datasets. MEP latency varied from trial to trial in individual participants with a median range of 3.9 ms. Shorter MEP latencies were associated with larger MEP amplitudes for most individuals (median r  = − 0.47), showing that latency and amplitude are jointly determined by the excitability of the corticospinal system when TMS is delivered. TMS delivered during heightened excitability could discharge a greater number of cortico-cortical and corticospinal cells, increasing the amplitude and, by recurrent activation of corticospinal cells, the number of descending indirect waves. An increase in the amplitude and number of indirect waves would progressively recruit larger spinal motor neurons with large-diameter fast-conducting fibers, which would shorten MEP onset latency and increase MEP amplitude. In addition to MEP amplitude variability, understanding MEP latency variability is important given that these parameters are used to help characterize pathophysiology of movement disorders.</description><subject>Analysis</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell activation</subject><subject>Cortex (motor)</subject><subject>Electromyography</subject><subject>Evoked Potentials, Motor - physiology</subject><subject>Excitability</subject><subject>Humans</subject><subject>Latency</subject><subject>Magnetic brain stimulation</subject><subject>Magnetic fields</subject><subject>Motor Cortex - physiology</subject><subject>Motor evoked potentials</subject><subject>Motor neurons</subject><subject>Movement disorders</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscles</subject><subject>Neurology</subject><subject>Neuromuscular junctions</subject><subject>Neurophysiology</subject><subject>Neurosciences</subject><subject>Pyramidal tracts</subject><subject>Research Article</subject><subject>Transcranial magnetic stimulation</subject><subject>Transcranial Magnetic Stimulation - methods</subject><issn>0014-4819</issn><issn>1432-1106</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kl2L1DAUhoso7rr6B7yQgCB60TUfTdLcCMvgx8KC4Md1SNO0kzVNxiQdnP0J_mpTZ93dEZFC2p7znPdwTt6qeorgKYKQv04QYoxqiEkNGeW0vrpXHaOG4BohyO5XxxCipm5aJI6qRyldLr-Ew4fVEWEtQqxlx9XPVdiqaFW2wYMwgLw2QE0bZ_Pcly_fA6ey8Xq3JKeQQwRmG76ZHmxCiWerXALGWW1ziXU7kKPySZejZMCkRm-y1SBlO81u38V6oEA0JeRHsF5aTHPSzjyuHgxFzTy5fp9UX9-9_bL6UF98fH--OruoNYMs1wJ1ne45VX3ftVq1kGIiBiEgZohASkXPWtXRDmmmOVctJ7zpIYRCYNwziMhJ9Wavu5m7yfS6TBGVk5toJxV3MigrDzPeruUYtlKIllIuisDLa4EYvs9lEDnZpI1zypswJ4l5gSikzdLr-V_oZZijL-MVqsWUEkHgLTUqZ6T1Qyh99SIqzzgRjDUctoU6_QdVnt5MVgdvBlviBwWvDgoKk82PPKo5JXn--dMh--IOuzbK5XUKbl5uLB2CeA_qGFKKZrhZHIJysaXc21IWW8rftpRXpejZ3ZXflPzxYQHIHkgl5UcTb_f0H9lfANjtyg</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Vallence, A. M.</creator><creator>Rurak, B. K.</creator><creator>Fujiyama, H.</creator><creator>Hammond, G. R.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>0-V</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>88J</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2R</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9190-6366</orcidid></search><sort><creationdate>20230301</creationdate><title>Covariation of the amplitude and latency of motor evoked potentials elicited by transcranial magnetic stimulation in a resting hand muscle</title><author>Vallence, A. M. ; Rurak, B. K. ; Fujiyama, H. ; Hammond, G. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-91bbcd75addb8ca805239f99026130559d68ab5b1c6c77a87374d0009922d6013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell activation</topic><topic>Cortex (motor)</topic><topic>Electromyography</topic><topic>Evoked Potentials, Motor - physiology</topic><topic>Excitability</topic><topic>Humans</topic><topic>Latency</topic><topic>Magnetic brain stimulation</topic><topic>Magnetic fields</topic><topic>Motor Cortex - physiology</topic><topic>Motor evoked potentials</topic><topic>Motor neurons</topic><topic>Movement disorders</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscles</topic><topic>Neurology</topic><topic>Neuromuscular junctions</topic><topic>Neurophysiology</topic><topic>Neurosciences</topic><topic>Pyramidal tracts</topic><topic>Research Article</topic><topic>Transcranial magnetic stimulation</topic><topic>Transcranial Magnetic Stimulation - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vallence, A. M.</creatorcontrib><creatorcontrib>Rurak, B. K.</creatorcontrib><creatorcontrib>Fujiyama, H.</creatorcontrib><creatorcontrib>Hammond, G. R.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Social Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vallence, A. M.</au><au>Rurak, B. K.</au><au>Fujiyama, H.</au><au>Hammond, G. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Covariation of the amplitude and latency of motor evoked potentials elicited by transcranial magnetic stimulation in a resting hand muscle</atitle><jtitle>Experimental brain research</jtitle><stitle>Exp Brain Res</stitle><addtitle>Exp Brain Res</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>241</volume><issue>3</issue><spage>927</spage><epage>936</epage><pages>927-936</pages><issn>0014-4819</issn><eissn>1432-1106</eissn><abstract>Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique used to study human neurophysiology. A single TMS pulse delivered to the primary motor cortex can elicit a motor evoked potential (MEP) in a target muscle. MEP amplitude is a measure of corticospinal excitability and MEP latency is a measure of the time taken for intracortical processing, corticofugal conduction, spinal processing, and neuromuscular transmission. Although MEP amplitude is known to vary across trials with constant stimulus intensity, little is known about MEP latency variation. To investigate MEP amplitude and latency variation at the individual level, we scored single-pulse MEP amplitude and latency in a resting hand muscle from two datasets. MEP latency varied from trial to trial in individual participants with a median range of 3.9 ms. Shorter MEP latencies were associated with larger MEP amplitudes for most individuals (median r  = − 0.47), showing that latency and amplitude are jointly determined by the excitability of the corticospinal system when TMS is delivered. TMS delivered during heightened excitability could discharge a greater number of cortico-cortical and corticospinal cells, increasing the amplitude and, by recurrent activation of corticospinal cells, the number of descending indirect waves. An increase in the amplitude and number of indirect waves would progressively recruit larger spinal motor neurons with large-diameter fast-conducting fibers, which would shorten MEP onset latency and increase MEP amplitude. In addition to MEP amplitude variability, understanding MEP latency variability is important given that these parameters are used to help characterize pathophysiology of movement disorders.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>36811686</pmid><doi>10.1007/s00221-023-06575-z</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9190-6366</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-4819
ispartof Experimental brain research, 2023-03, Vol.241 (3), p.927-936
issn 0014-4819
1432-1106
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9985579
source MEDLINE; SpringerLink Journals
subjects Analysis
Biomedical and Life Sciences
Biomedicine
Cell activation
Cortex (motor)
Electromyography
Evoked Potentials, Motor - physiology
Excitability
Humans
Latency
Magnetic brain stimulation
Magnetic fields
Motor Cortex - physiology
Motor evoked potentials
Motor neurons
Movement disorders
Muscle, Skeletal - physiology
Muscles
Neurology
Neuromuscular junctions
Neurophysiology
Neurosciences
Pyramidal tracts
Research Article
Transcranial magnetic stimulation
Transcranial Magnetic Stimulation - methods
title Covariation of the amplitude and latency of motor evoked potentials elicited by transcranial magnetic stimulation in a resting hand muscle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Covariation%20of%20the%20amplitude%20and%20latency%20of%20motor%20evoked%20potentials%20elicited%20by%20transcranial%20magnetic%20stimulation%20in%20a%20resting%20hand%20muscle&rft.jtitle=Experimental%20brain%20research&rft.au=Vallence,%20A.%20M.&rft.date=2023-03-01&rft.volume=241&rft.issue=3&rft.spage=927&rft.epage=936&rft.pages=927-936&rft.issn=0014-4819&rft.eissn=1432-1106&rft_id=info:doi/10.1007/s00221-023-06575-z&rft_dat=%3Cgale_pubme%3EA739664708%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2782553930&rft_id=info:pmid/36811686&rft_galeid=A739664708&rfr_iscdi=true