Diagnostic Performance and Clinical Applicability of Blood-Based Biomarkers in a Prospective Memory Clinic Cohort
Blood-based biomarkers have emerged as minimally invasive options for evaluating cognitive impairment. Most studies to date have assessed them in research cohorts, limiting their generalization to everyday clinical practice. We evaluated their diagnostic performance and clinical applicability in a p...
Gespeichert in:
Veröffentlicht in: | Neurology 2023-02, Vol.100 (8), p.e860-e873 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Blood-based biomarkers have emerged as minimally invasive options for evaluating cognitive impairment. Most studies to date have assessed them in research cohorts, limiting their generalization to everyday clinical practice. We evaluated their diagnostic performance and clinical applicability in a prospective, real-world, memory clinic cohort.
All patients referred with suspected cognitive impairment between July 2019 and June 2021 were prospectively invited to participate. Five plasma biomarkers (tau phosphorylated at threonine 181 [p-tau181], glial fibrillary acidic protein [GFAP], neurofilament light chain [NfL], total tau [t-tau], and ubiquitin C-terminal hydrolase L1 [UCH-L1]) were determined with single-molecule array. Performance was assessed in comparison to clinical diagnosis (blinded to plasma results) and amyloid status (CSF/PET). A group of cognitively unimpaired (CU) controls was also included.
Three hundred forty-nine participants (mean age 68, SD 8.3 years) and 36 CU controls (mean age 61.7, SD 8.2 years) were included. In the subcohort with available Alzheimer disease (AD) biomarkers (n = 268), plasma p-tau181 and GFAP had a high diagnostic accuracy to differentiate AD from non-neurodegenerative causes (area under the receiver operating characteristic curve 0.94 and 0.92, respectively), with p-tau181 systematically outperforming GFAP. Plasma p-tau181 levels predicted amyloid status (85% sensitivity and specificity) with accurate individual prediction in approximately 60% of the patients. Plasma NfL differentiated frontotemporal dementia (FTD) syndromes from CU (0.90) and non-neurodegenerative causes (0.93), whereas the discriminative capacity with AD and between all neurodegenerative and non-neurodegenerative causes was less accurate. A combination of p-tau181 and NfL identified FTD with 82% sensitivity and 85% specificity and had a negative predictive value for neurodegenerative diagnosis of 86%, ruling out half of the non-neurodegenerative diagnoses. In the subcohort without AD biomarkers, similar results were obtained. T-tau and UCH-L1 did not offer added diagnostic value.
Plasma p-tau181 predicted amyloid status with high accuracy and could have potentially avoided CSF/amyloid PET testing in approximately 60% of subjects in a memory clinic setting. NfL was useful for identifying FTD from non-neurodegenerative causes but behaved worse than p-tau181 in all other comparisons. Combining p-tau181 and NfL improved diagnostic performance for F |
---|---|
ISSN: | 0028-3878 1526-632X 1526-632X |
DOI: | 10.1212/WNL.0000000000201597 |