Immunogenicity of Recombinant Adeno-Associated Virus (AAV) Vectors for Gene Transfer

Recombinant adeno-associated viruses (AAVs) have emerged as promising gene delivery vehicles resulting in three US Food and Drug Administration (FDA) and one European Medicines Agency (EMA)-approved AAV-based gene therapies. Despite being a leading platform for therapeutic gene transfer in several c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioDrugs : clinical immunotherapeutics, biopharmaceuticals, and gene therapy biopharmaceuticals, and gene therapy, 2023-05, Vol.37 (3), p.311-329
Hauptverfasser: Arjomandnejad, Motahareh, Dasgupta, Ishani, Flotte, Terence R., Keeler, Allison M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 329
container_issue 3
container_start_page 311
container_title BioDrugs : clinical immunotherapeutics, biopharmaceuticals, and gene therapy
container_volume 37
creator Arjomandnejad, Motahareh
Dasgupta, Ishani
Flotte, Terence R.
Keeler, Allison M.
description Recombinant adeno-associated viruses (AAVs) have emerged as promising gene delivery vehicles resulting in three US Food and Drug Administration (FDA) and one European Medicines Agency (EMA)-approved AAV-based gene therapies. Despite being a leading platform for therapeutic gene transfer in several clinical trials, host immune responses against the AAV vector and transgene have hampered their widespread application. Multiple factors, including vector design, dose, and route of administration, contribute to the overall immunogenicity of AAVs. The immune responses against the AAV capsid and transgene involve an initial innate sensing. The innate immune response subsequently triggers an adaptive immune response to elicit a robust and specific response against the AAV vector. AAV gene therapy clinical trials and preclinical studies provide important information about the immune-mediated toxicities associated with AAV, yet studies suggest preclinical models fail to precisely predict the outcome of gene delivery in humans. This review discusses the contribution of the innate and adaptive immune response against AAVs, highlighting the challenges and potential strategies to mitigate these responses, thereby enhancing the therapeutic potential of AAV gene therapy.
doi_str_mv 10.1007/s40259-023-00585-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9979149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781618980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-75bb989e0a981f747d9f3c32d57153fd4e7e4c2bcffb1127fbc184f4d79a83213</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhoNY7If-ARcScFMXqfmaSbIRhqK1UCiU68VdyGROril3kprMFPrvnfa29WPh6gTOc96Tw4PQW0ZPGKXqY5WUN4ZQLgiljW6IeoEOGFOGMEO_v3x4C6I1lfvosNZrSmkrjHqF9kWrW861OUCr83GcU95Aij5OdzgHfAU-j31MLk24GyBl0tWafXQTDHgdy1zxcdetP-A1-CmXikMu-AwS4FVxqQYor9FecNsKbx7rEfr25fPq9Cu5uDw7P-0uiJdKTkQ1fW-0AeqMZkFJNZggvOBDo1gjwiBBgfS89yH0jHEVes-0DHJQxmnBmThCn3a5N3M_wuAhTcVt7U2Joyt3Nrto_-6k-MNu8q01RhkmzRJw_BhQ8s8Z6mTHWD1sty5BnqvlSrOWaaPpgr7_B73Oc0nLeZbrBWlbKdVC8R3lS661QHj-DKP2XprdSbOLNPsgzd4PvfvzjOeRJ0sLIHZAXVppA-X37v_E_gKxaaLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818966447</pqid></control><display><type>article</type><title>Immunogenicity of Recombinant Adeno-Associated Virus (AAV) Vectors for Gene Transfer</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Arjomandnejad, Motahareh ; Dasgupta, Ishani ; Flotte, Terence R. ; Keeler, Allison M.</creator><creatorcontrib>Arjomandnejad, Motahareh ; Dasgupta, Ishani ; Flotte, Terence R. ; Keeler, Allison M.</creatorcontrib><description>Recombinant adeno-associated viruses (AAVs) have emerged as promising gene delivery vehicles resulting in three US Food and Drug Administration (FDA) and one European Medicines Agency (EMA)-approved AAV-based gene therapies. Despite being a leading platform for therapeutic gene transfer in several clinical trials, host immune responses against the AAV vector and transgene have hampered their widespread application. Multiple factors, including vector design, dose, and route of administration, contribute to the overall immunogenicity of AAVs. The immune responses against the AAV capsid and transgene involve an initial innate sensing. The innate immune response subsequently triggers an adaptive immune response to elicit a robust and specific response against the AAV vector. AAV gene therapy clinical trials and preclinical studies provide important information about the immune-mediated toxicities associated with AAV, yet studies suggest preclinical models fail to precisely predict the outcome of gene delivery in humans. This review discusses the contribution of the innate and adaptive immune response against AAVs, highlighting the challenges and potential strategies to mitigate these responses, thereby enhancing the therapeutic potential of AAV gene therapy.</description><identifier>ISSN: 1173-8804</identifier><identifier>EISSN: 1179-190X</identifier><identifier>DOI: 10.1007/s40259-023-00585-7</identifier><identifier>PMID: 36862289</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adaptive immunity ; Antibodies ; Antigens ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Clinical trials ; Cytokines ; Cytotoxicity ; Dependovirus - genetics ; Drug dosages ; Expression vectors ; FDA approval ; Gene therapy ; Gene transfer ; Gene Transfer Techniques ; Genetic Therapy - adverse effects ; Genetic Therapy - methods ; Genetic Vectors ; Genomes ; Hemophilia ; Humans ; Immune response ; Immune system ; Immunity, Innate ; Immunogenicity ; Innate immunity ; Liver ; Molecular Medicine ; Pathogens ; Pattern recognition ; Pharmacotherapy ; Proteins ; Review ; Review Article ; Vectors (Biology)</subject><ispartof>BioDrugs : clinical immunotherapeutics, biopharmaceuticals, and gene therapy, 2023-05, Vol.37 (3), p.311-329</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>Copyright Springer Nature B.V. May 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-75bb989e0a981f747d9f3c32d57153fd4e7e4c2bcffb1127fbc184f4d79a83213</citedby><cites>FETCH-LOGICAL-c474t-75bb989e0a981f747d9f3c32d57153fd4e7e4c2bcffb1127fbc184f4d79a83213</cites><orcidid>0000-0002-5202-4616</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40259-023-00585-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40259-023-00585-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36862289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arjomandnejad, Motahareh</creatorcontrib><creatorcontrib>Dasgupta, Ishani</creatorcontrib><creatorcontrib>Flotte, Terence R.</creatorcontrib><creatorcontrib>Keeler, Allison M.</creatorcontrib><title>Immunogenicity of Recombinant Adeno-Associated Virus (AAV) Vectors for Gene Transfer</title><title>BioDrugs : clinical immunotherapeutics, biopharmaceuticals, and gene therapy</title><addtitle>BioDrugs</addtitle><addtitle>BioDrugs</addtitle><description>Recombinant adeno-associated viruses (AAVs) have emerged as promising gene delivery vehicles resulting in three US Food and Drug Administration (FDA) and one European Medicines Agency (EMA)-approved AAV-based gene therapies. Despite being a leading platform for therapeutic gene transfer in several clinical trials, host immune responses against the AAV vector and transgene have hampered their widespread application. Multiple factors, including vector design, dose, and route of administration, contribute to the overall immunogenicity of AAVs. The immune responses against the AAV capsid and transgene involve an initial innate sensing. The innate immune response subsequently triggers an adaptive immune response to elicit a robust and specific response against the AAV vector. AAV gene therapy clinical trials and preclinical studies provide important information about the immune-mediated toxicities associated with AAV, yet studies suggest preclinical models fail to precisely predict the outcome of gene delivery in humans. This review discusses the contribution of the innate and adaptive immune response against AAVs, highlighting the challenges and potential strategies to mitigate these responses, thereby enhancing the therapeutic potential of AAV gene therapy.</description><subject>Adaptive immunity</subject><subject>Antibodies</subject><subject>Antigens</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Clinical trials</subject><subject>Cytokines</subject><subject>Cytotoxicity</subject><subject>Dependovirus - genetics</subject><subject>Drug dosages</subject><subject>Expression vectors</subject><subject>FDA approval</subject><subject>Gene therapy</subject><subject>Gene transfer</subject><subject>Gene Transfer Techniques</subject><subject>Genetic Therapy - adverse effects</subject><subject>Genetic Therapy - methods</subject><subject>Genetic Vectors</subject><subject>Genomes</subject><subject>Hemophilia</subject><subject>Humans</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunity, Innate</subject><subject>Immunogenicity</subject><subject>Innate immunity</subject><subject>Liver</subject><subject>Molecular Medicine</subject><subject>Pathogens</subject><subject>Pattern recognition</subject><subject>Pharmacotherapy</subject><subject>Proteins</subject><subject>Review</subject><subject>Review Article</subject><subject>Vectors (Biology)</subject><issn>1173-8804</issn><issn>1179-190X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1rFTEUhoNY7If-ARcScFMXqfmaSbIRhqK1UCiU68VdyGROril3kprMFPrvnfa29WPh6gTOc96Tw4PQW0ZPGKXqY5WUN4ZQLgiljW6IeoEOGFOGMEO_v3x4C6I1lfvosNZrSmkrjHqF9kWrW861OUCr83GcU95Aij5OdzgHfAU-j31MLk24GyBl0tWafXQTDHgdy1zxcdetP-A1-CmXikMu-AwS4FVxqQYor9FecNsKbx7rEfr25fPq9Cu5uDw7P-0uiJdKTkQ1fW-0AeqMZkFJNZggvOBDo1gjwiBBgfS89yH0jHEVes-0DHJQxmnBmThCn3a5N3M_wuAhTcVt7U2Joyt3Nrto_-6k-MNu8q01RhkmzRJw_BhQ8s8Z6mTHWD1sty5BnqvlSrOWaaPpgr7_B73Oc0nLeZbrBWlbKdVC8R3lS661QHj-DKP2XprdSbOLNPsgzd4PvfvzjOeRJ0sLIHZAXVppA-X37v_E_gKxaaLA</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Arjomandnejad, Motahareh</creator><creator>Dasgupta, Ishani</creator><creator>Flotte, Terence R.</creator><creator>Keeler, Allison M.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5202-4616</orcidid></search><sort><creationdate>20230501</creationdate><title>Immunogenicity of Recombinant Adeno-Associated Virus (AAV) Vectors for Gene Transfer</title><author>Arjomandnejad, Motahareh ; Dasgupta, Ishani ; Flotte, Terence R. ; Keeler, Allison M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-75bb989e0a981f747d9f3c32d57153fd4e7e4c2bcffb1127fbc184f4d79a83213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive immunity</topic><topic>Antibodies</topic><topic>Antigens</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Clinical trials</topic><topic>Cytokines</topic><topic>Cytotoxicity</topic><topic>Dependovirus - genetics</topic><topic>Drug dosages</topic><topic>Expression vectors</topic><topic>FDA approval</topic><topic>Gene therapy</topic><topic>Gene transfer</topic><topic>Gene Transfer Techniques</topic><topic>Genetic Therapy - adverse effects</topic><topic>Genetic Therapy - methods</topic><topic>Genetic Vectors</topic><topic>Genomes</topic><topic>Hemophilia</topic><topic>Humans</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunity, Innate</topic><topic>Immunogenicity</topic><topic>Innate immunity</topic><topic>Liver</topic><topic>Molecular Medicine</topic><topic>Pathogens</topic><topic>Pattern recognition</topic><topic>Pharmacotherapy</topic><topic>Proteins</topic><topic>Review</topic><topic>Review Article</topic><topic>Vectors (Biology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arjomandnejad, Motahareh</creatorcontrib><creatorcontrib>Dasgupta, Ishani</creatorcontrib><creatorcontrib>Flotte, Terence R.</creatorcontrib><creatorcontrib>Keeler, Allison M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Immunology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioDrugs : clinical immunotherapeutics, biopharmaceuticals, and gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arjomandnejad, Motahareh</au><au>Dasgupta, Ishani</au><au>Flotte, Terence R.</au><au>Keeler, Allison M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immunogenicity of Recombinant Adeno-Associated Virus (AAV) Vectors for Gene Transfer</atitle><jtitle>BioDrugs : clinical immunotherapeutics, biopharmaceuticals, and gene therapy</jtitle><stitle>BioDrugs</stitle><addtitle>BioDrugs</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>37</volume><issue>3</issue><spage>311</spage><epage>329</epage><pages>311-329</pages><issn>1173-8804</issn><eissn>1179-190X</eissn><abstract>Recombinant adeno-associated viruses (AAVs) have emerged as promising gene delivery vehicles resulting in three US Food and Drug Administration (FDA) and one European Medicines Agency (EMA)-approved AAV-based gene therapies. Despite being a leading platform for therapeutic gene transfer in several clinical trials, host immune responses against the AAV vector and transgene have hampered their widespread application. Multiple factors, including vector design, dose, and route of administration, contribute to the overall immunogenicity of AAVs. The immune responses against the AAV capsid and transgene involve an initial innate sensing. The innate immune response subsequently triggers an adaptive immune response to elicit a robust and specific response against the AAV vector. AAV gene therapy clinical trials and preclinical studies provide important information about the immune-mediated toxicities associated with AAV, yet studies suggest preclinical models fail to precisely predict the outcome of gene delivery in humans. This review discusses the contribution of the innate and adaptive immune response against AAVs, highlighting the challenges and potential strategies to mitigate these responses, thereby enhancing the therapeutic potential of AAV gene therapy.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>36862289</pmid><doi>10.1007/s40259-023-00585-7</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-5202-4616</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1173-8804
ispartof BioDrugs : clinical immunotherapeutics, biopharmaceuticals, and gene therapy, 2023-05, Vol.37 (3), p.311-329
issn 1173-8804
1179-190X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9979149
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Adaptive immunity
Antibodies
Antigens
Biomedical and Life Sciences
Biomedicine
Cancer Research
Clinical trials
Cytokines
Cytotoxicity
Dependovirus - genetics
Drug dosages
Expression vectors
FDA approval
Gene therapy
Gene transfer
Gene Transfer Techniques
Genetic Therapy - adverse effects
Genetic Therapy - methods
Genetic Vectors
Genomes
Hemophilia
Humans
Immune response
Immune system
Immunity, Innate
Immunogenicity
Innate immunity
Liver
Molecular Medicine
Pathogens
Pattern recognition
Pharmacotherapy
Proteins
Review
Review Article
Vectors (Biology)
title Immunogenicity of Recombinant Adeno-Associated Virus (AAV) Vectors for Gene Transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immunogenicity%20of%20Recombinant%20Adeno-Associated%20Virus%20(AAV)%20Vectors%20for%20Gene%20Transfer&rft.jtitle=BioDrugs%20:%20clinical%20immunotherapeutics,%20biopharmaceuticals,%20and%20gene%20therapy&rft.au=Arjomandnejad,%20Motahareh&rft.date=2023-05-01&rft.volume=37&rft.issue=3&rft.spage=311&rft.epage=329&rft.pages=311-329&rft.issn=1173-8804&rft.eissn=1179-190X&rft_id=info:doi/10.1007/s40259-023-00585-7&rft_dat=%3Cproquest_pubme%3E2781618980%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2818966447&rft_id=info:pmid/36862289&rfr_iscdi=true