The structural mechanism for transcription activation by Caulobacter crescentus GcrA
Canonical bacterial transcription activators bind to their cognate cis elements at the upstream of transcription start site (TSS) in a form of dimer. Caulobacter crescentus GcrA, a non-canonical transcription activator, can activate transcription from promoters harboring its cis element at the upstr...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2023-02, Vol.51 (4), p.1960-1970 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1970 |
---|---|
container_issue | 4 |
container_start_page | 1960 |
container_title | Nucleic acids research |
container_volume | 51 |
creator | Wu, Xiaoxian Yu, Chengzhi Mu, Wenhui Gu, Zhanxi Feng, Yu Zhang, Yu |
description | Canonical bacterial transcription activators bind to their cognate cis elements at the upstream of transcription start site (TSS) in a form of dimer. Caulobacter crescentus GcrA, a non-canonical transcription activator, can activate transcription from promoters harboring its cis element at the upstream or downstream of TSS in a form of monomer. We determined two cryo-EM structures of C. crescentus GcrA-bound transcription activation complexes, GcrA TACU and GcrA TACD, which comprise GcrA, RNAP, σ70 and promoter DNA with GcrA cis elements at either the upstream or downstream of TSS at 3.6 and 3.8 Å, respectively. In the GcrA-TACU structure, GcrA makes bipartite interactions with both σ70 domain 2 (σ702) and its cis element, while in the GcrA-TACD structure, GcrA retains interaction with σ702 but loses the interaction with its cis element. Our results suggest that GcrA likely forms a functionally specialized GcrA-RNAP-σA holoenzyme, in which GcrA first locates its cis element and then facilitates RNAP to load on core promoter at its proximal region. The sequence-specific interaction of GcrA and DNA is disrupted either at the stage of RPo formation or promoter escape depending on the location of GcrA cis elements relative to TSS. |
doi_str_mv | 10.1093/nar/gkad016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9976885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771090002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-cfad15e131efb91fae487d1481bd85475d25185661c95510534fb74b18d147be3</originalsourceid><addsrcrecordid>eNpVkc9LwzAUx4MoOqcn79KjIHV5TdK0F0GGTmHgZZ5DkqZbtW1mkg7235u5KXp6j_c-fN-PL0JXgO8Al2TSSzdZfsgKQ36ERkDyLKVlnh2jESaYpYBpcYbOvX_HGCgweorOSM6BEShHaLFYmcQHN-gwONkmndEr2Te-S2rrkuBk77Vr1qGxfSJ1aDbyO1XbZCqH1qpYMy7Rznht-jD4ZKbdwwU6qWXrzeUhjtHb0-Ni-pzOX2cv04d5qgmlIdW1rIAZIGBqVUItDS14BbQAVRWMclZlDAqW56BLxgAzQmvFqYIiQlwZMkb3e931oDpT7TaIN4i1azrptsLKRvzv9M1KLO1GlCXPi4JFgZuDgLOfg_FBdE08pG1lb-zgRcZ5fDHGOIvo7R7VznrvTP07BrDY-SCiD-LgQ6Sv_272y_48nnwBK6OHBQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771090002</pqid></control><display><type>article</type><title>The structural mechanism for transcription activation by Caulobacter crescentus GcrA</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wu, Xiaoxian ; Yu, Chengzhi ; Mu, Wenhui ; Gu, Zhanxi ; Feng, Yu ; Zhang, Yu</creator><creatorcontrib>Wu, Xiaoxian ; Yu, Chengzhi ; Mu, Wenhui ; Gu, Zhanxi ; Feng, Yu ; Zhang, Yu</creatorcontrib><description>Canonical bacterial transcription activators bind to their cognate cis elements at the upstream of transcription start site (TSS) in a form of dimer. Caulobacter crescentus GcrA, a non-canonical transcription activator, can activate transcription from promoters harboring its cis element at the upstream or downstream of TSS in a form of monomer. We determined two cryo-EM structures of C. crescentus GcrA-bound transcription activation complexes, GcrA TACU and GcrA TACD, which comprise GcrA, RNAP, σ70 and promoter DNA with GcrA cis elements at either the upstream or downstream of TSS at 3.6 and 3.8 Å, respectively. In the GcrA-TACU structure, GcrA makes bipartite interactions with both σ70 domain 2 (σ702) and its cis element, while in the GcrA-TACD structure, GcrA retains interaction with σ702 but loses the interaction with its cis element. Our results suggest that GcrA likely forms a functionally specialized GcrA-RNAP-σA holoenzyme, in which GcrA first locates its cis element and then facilitates RNAP to load on core promoter at its proximal region. The sequence-specific interaction of GcrA and DNA is disrupted either at the stage of RPo formation or promoter escape depending on the location of GcrA cis elements relative to TSS.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkad016</identifier><identifier>PMID: 36715319</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bacterial Proteins - metabolism ; Caulobacter crescentus - metabolism ; DNA - metabolism ; DNA-Directed RNA Polymerases - metabolism ; Gene Expression Regulation, Bacterial ; Structural Biology ; Transcription Factors - metabolism ; Transcription, Genetic ; Transcriptional Activation</subject><ispartof>Nucleic acids research, 2023-02, Vol.51 (4), p.1960-1970</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-cfad15e131efb91fae487d1481bd85475d25185661c95510534fb74b18d147be3</citedby><cites>FETCH-LOGICAL-c344t-cfad15e131efb91fae487d1481bd85475d25185661c95510534fb74b18d147be3</cites><orcidid>0000-0002-1778-8389 ; 0000-0003-4239-8320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9976885/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9976885/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36715319$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Xiaoxian</creatorcontrib><creatorcontrib>Yu, Chengzhi</creatorcontrib><creatorcontrib>Mu, Wenhui</creatorcontrib><creatorcontrib>Gu, Zhanxi</creatorcontrib><creatorcontrib>Feng, Yu</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><title>The structural mechanism for transcription activation by Caulobacter crescentus GcrA</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Canonical bacterial transcription activators bind to their cognate cis elements at the upstream of transcription start site (TSS) in a form of dimer. Caulobacter crescentus GcrA, a non-canonical transcription activator, can activate transcription from promoters harboring its cis element at the upstream or downstream of TSS in a form of monomer. We determined two cryo-EM structures of C. crescentus GcrA-bound transcription activation complexes, GcrA TACU and GcrA TACD, which comprise GcrA, RNAP, σ70 and promoter DNA with GcrA cis elements at either the upstream or downstream of TSS at 3.6 and 3.8 Å, respectively. In the GcrA-TACU structure, GcrA makes bipartite interactions with both σ70 domain 2 (σ702) and its cis element, while in the GcrA-TACD structure, GcrA retains interaction with σ702 but loses the interaction with its cis element. Our results suggest that GcrA likely forms a functionally specialized GcrA-RNAP-σA holoenzyme, in which GcrA first locates its cis element and then facilitates RNAP to load on core promoter at its proximal region. The sequence-specific interaction of GcrA and DNA is disrupted either at the stage of RPo formation or promoter escape depending on the location of GcrA cis elements relative to TSS.</description><subject>Bacterial Proteins - metabolism</subject><subject>Caulobacter crescentus - metabolism</subject><subject>DNA - metabolism</subject><subject>DNA-Directed RNA Polymerases - metabolism</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Structural Biology</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><subject>Transcriptional Activation</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc9LwzAUx4MoOqcn79KjIHV5TdK0F0GGTmHgZZ5DkqZbtW1mkg7235u5KXp6j_c-fN-PL0JXgO8Al2TSSzdZfsgKQ36ERkDyLKVlnh2jESaYpYBpcYbOvX_HGCgweorOSM6BEShHaLFYmcQHN-gwONkmndEr2Te-S2rrkuBk77Vr1qGxfSJ1aDbyO1XbZCqH1qpYMy7Rznht-jD4ZKbdwwU6qWXrzeUhjtHb0-Ni-pzOX2cv04d5qgmlIdW1rIAZIGBqVUItDS14BbQAVRWMclZlDAqW56BLxgAzQmvFqYIiQlwZMkb3e931oDpT7TaIN4i1azrptsLKRvzv9M1KLO1GlCXPi4JFgZuDgLOfg_FBdE08pG1lb-zgRcZ5fDHGOIvo7R7VznrvTP07BrDY-SCiD-LgQ6Sv_272y_48nnwBK6OHBQ</recordid><startdate>20230228</startdate><enddate>20230228</enddate><creator>Wu, Xiaoxian</creator><creator>Yu, Chengzhi</creator><creator>Mu, Wenhui</creator><creator>Gu, Zhanxi</creator><creator>Feng, Yu</creator><creator>Zhang, Yu</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1778-8389</orcidid><orcidid>https://orcid.org/0000-0003-4239-8320</orcidid></search><sort><creationdate>20230228</creationdate><title>The structural mechanism for transcription activation by Caulobacter crescentus GcrA</title><author>Wu, Xiaoxian ; Yu, Chengzhi ; Mu, Wenhui ; Gu, Zhanxi ; Feng, Yu ; Zhang, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-cfad15e131efb91fae487d1481bd85475d25185661c95510534fb74b18d147be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bacterial Proteins - metabolism</topic><topic>Caulobacter crescentus - metabolism</topic><topic>DNA - metabolism</topic><topic>DNA-Directed RNA Polymerases - metabolism</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Structural Biology</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><topic>Transcriptional Activation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xiaoxian</creatorcontrib><creatorcontrib>Yu, Chengzhi</creatorcontrib><creatorcontrib>Mu, Wenhui</creatorcontrib><creatorcontrib>Gu, Zhanxi</creatorcontrib><creatorcontrib>Feng, Yu</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xiaoxian</au><au>Yu, Chengzhi</au><au>Mu, Wenhui</au><au>Gu, Zhanxi</au><au>Feng, Yu</au><au>Zhang, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The structural mechanism for transcription activation by Caulobacter crescentus GcrA</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2023-02-28</date><risdate>2023</risdate><volume>51</volume><issue>4</issue><spage>1960</spage><epage>1970</epage><pages>1960-1970</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Canonical bacterial transcription activators bind to their cognate cis elements at the upstream of transcription start site (TSS) in a form of dimer. Caulobacter crescentus GcrA, a non-canonical transcription activator, can activate transcription from promoters harboring its cis element at the upstream or downstream of TSS in a form of monomer. We determined two cryo-EM structures of C. crescentus GcrA-bound transcription activation complexes, GcrA TACU and GcrA TACD, which comprise GcrA, RNAP, σ70 and promoter DNA with GcrA cis elements at either the upstream or downstream of TSS at 3.6 and 3.8 Å, respectively. In the GcrA-TACU structure, GcrA makes bipartite interactions with both σ70 domain 2 (σ702) and its cis element, while in the GcrA-TACD structure, GcrA retains interaction with σ702 but loses the interaction with its cis element. Our results suggest that GcrA likely forms a functionally specialized GcrA-RNAP-σA holoenzyme, in which GcrA first locates its cis element and then facilitates RNAP to load on core promoter at its proximal region. The sequence-specific interaction of GcrA and DNA is disrupted either at the stage of RPo formation or promoter escape depending on the location of GcrA cis elements relative to TSS.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>36715319</pmid><doi>10.1093/nar/gkad016</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1778-8389</orcidid><orcidid>https://orcid.org/0000-0003-4239-8320</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2023-02, Vol.51 (4), p.1960-1970 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9976885 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Bacterial Proteins - metabolism Caulobacter crescentus - metabolism DNA - metabolism DNA-Directed RNA Polymerases - metabolism Gene Expression Regulation, Bacterial Structural Biology Transcription Factors - metabolism Transcription, Genetic Transcriptional Activation |
title | The structural mechanism for transcription activation by Caulobacter crescentus GcrA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A31%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20structural%20mechanism%20for%20transcription%20activation%20by%20Caulobacter%20crescentus%20GcrA&rft.jtitle=Nucleic%20acids%20research&rft.au=Wu,%20Xiaoxian&rft.date=2023-02-28&rft.volume=51&rft.issue=4&rft.spage=1960&rft.epage=1970&rft.pages=1960-1970&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkad016&rft_dat=%3Cproquest_pubme%3E2771090002%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771090002&rft_id=info:pmid/36715319&rfr_iscdi=true |