Intratumoral and peritumoral radiomics for preoperatively predicting the axillary non-sentinel lymph node metastasis in breast cancer on the basis of contrast-enhanced mammography: a multicenter study

To develop and test a contrast-enhanced mammography (CEM)-based radiomics model using intratumoral and peritumoral regions to predict non-sentinel lymph node (NSLN) metastasis in breast cancer before surgery. This multicenter study included 365 breast cancer patients with sentinel lymph node metasta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of radiology 2023-02, Vol.96 (1143), p.20220068-20220068
Hauptverfasser: Lin, Fan, Li, Qin, Wang, Zhongyi, Shi, Yinghong, Ma, Heng, Zhang, Haicheng, Zhang, Kun, Yang, Ping, Zhang, Ran, Duan, Shaofeng, Gu, Yajia, Mao, Ning, Xie, Haizhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20220068
container_issue 1143
container_start_page 20220068
container_title British journal of radiology
container_volume 96
creator Lin, Fan
Li, Qin
Wang, Zhongyi
Shi, Yinghong
Ma, Heng
Zhang, Haicheng
Zhang, Kun
Yang, Ping
Zhang, Ran
Duan, Shaofeng
Gu, Yajia
Mao, Ning
Xie, Haizhu
description To develop and test a contrast-enhanced mammography (CEM)-based radiomics model using intratumoral and peritumoral regions to predict non-sentinel lymph node (NSLN) metastasis in breast cancer before surgery. This multicenter study included 365 breast cancer patients with sentinel lymph node metastasis. Intratumoral regions of interest (ROIs) were manually delineated, and peritumoral ROIs (5 and 10 mm) were automatically obtained. Five models, including intratumoral model, peritumoral (5 and 10 mm) models, and intratumoral+peritumoral (5 and 10 mm) models, were constructed by support vector machine classifier on the basis of optimal features selected by variance threshold, SelectKbest, and least absolute shrinkage and selection operator algorithms. The predictive performance of radiomics models was evaluated by receiver operating characteristic curves. An external testing set was used to test the model. The Memorial Sloan Kettering Cancer Center (MSKCC) model was used to compare the predictive performance with radiomics model. The intratumoral ROI and intratumoral+peritumoral 10-mm ROI-based radiomics model achieved the best performance with an area under the curve (AUC) of 0.8000 (95% confidence interval [CI]: 0.6871-0.8266) in the internal testing set. In the external testing set, the AUC of radiomics model was 0.7567 (95% CI: 0.6717-0.8678), higher than that of MSKCC model (AUC = 0.6681, 95% CI: 0.5148-0.8213) ( = 0.361). The intratumoral and peritumoral radiomics based on CEM had an acceptable predictive performance in predicting NSLN metastasis in breast cancer, which could be seen as a supplementary predicting tool to help clinicians make appropriate surgical plans. The intratumoral and peritumoral CEM-based radiomics model could noninvasively predict NSLN metastasis in breast cancer patients before surgery.
doi_str_mv 10.1259/bjr.20220068
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9975381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2757054434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-7f6bb64494be8d84a5a8a49e27ec29f96636ee3e45935ab64f8ed7e7cef366263</originalsourceid><addsrcrecordid>eNpVUcFu1TAQtBCIPgo3zshHDqQ4tuM4HJCqqkClSlxA4mY5zuY9V7EdbKcif9jPwmn7KpAsWbMznl3vIPS2Jmc1bbqP_U08o4RSQoR8hnZ1y2UlJfn1HO0IIW1VU9mcoFcp3Wyw6chLdMJEw6kUYofurnyOOi8uRD1h7Qc8Q7RHHPVgg7Mm4TFEPEcIhdXZ3sK0bnCwJlu_x_kAWP-x06Tjin3wVQJfCJjwtLr5UEoDYAdZp3JswtbjPkJB2GhvIOLg7z36ezaM2IRtrJQr8IdNMWCnnQv7qOfD-glr7JYpW1O6lMcpL8P6Gr0Y9ZTgzeN9in5-ufxx8a26_v716uL8ujKMi1y1o-h7wXnHe5CD5LrRUvMOaAuGdmMnBBMADHjTsUYX5ShhaKE1MDIhqGCn6POD77z0DoZthLIpNUfryudV0Fb9z3h7UPtwq7qubZisi8H7R4MYfi-QsnI2GSi78xCWpGjbtKThnPEi_fAgNTGkFGF8alMTtYWvSvjqGH6Rv_t3tCfxMW32F5gis3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757054434</pqid></control><display><type>article</type><title>Intratumoral and peritumoral radiomics for preoperatively predicting the axillary non-sentinel lymph node metastasis in breast cancer on the basis of contrast-enhanced mammography: a multicenter study</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Lin, Fan ; Li, Qin ; Wang, Zhongyi ; Shi, Yinghong ; Ma, Heng ; Zhang, Haicheng ; Zhang, Kun ; Yang, Ping ; Zhang, Ran ; Duan, Shaofeng ; Gu, Yajia ; Mao, Ning ; Xie, Haizhu</creator><creatorcontrib>Lin, Fan ; Li, Qin ; Wang, Zhongyi ; Shi, Yinghong ; Ma, Heng ; Zhang, Haicheng ; Zhang, Kun ; Yang, Ping ; Zhang, Ran ; Duan, Shaofeng ; Gu, Yajia ; Mao, Ning ; Xie, Haizhu</creatorcontrib><description>To develop and test a contrast-enhanced mammography (CEM)-based radiomics model using intratumoral and peritumoral regions to predict non-sentinel lymph node (NSLN) metastasis in breast cancer before surgery. This multicenter study included 365 breast cancer patients with sentinel lymph node metastasis. Intratumoral regions of interest (ROIs) were manually delineated, and peritumoral ROIs (5 and 10 mm) were automatically obtained. Five models, including intratumoral model, peritumoral (5 and 10 mm) models, and intratumoral+peritumoral (5 and 10 mm) models, were constructed by support vector machine classifier on the basis of optimal features selected by variance threshold, SelectKbest, and least absolute shrinkage and selection operator algorithms. The predictive performance of radiomics models was evaluated by receiver operating characteristic curves. An external testing set was used to test the model. The Memorial Sloan Kettering Cancer Center (MSKCC) model was used to compare the predictive performance with radiomics model. The intratumoral ROI and intratumoral+peritumoral 10-mm ROI-based radiomics model achieved the best performance with an area under the curve (AUC) of 0.8000 (95% confidence interval [CI]: 0.6871-0.8266) in the internal testing set. In the external testing set, the AUC of radiomics model was 0.7567 (95% CI: 0.6717-0.8678), higher than that of MSKCC model (AUC = 0.6681, 95% CI: 0.5148-0.8213) ( = 0.361). The intratumoral and peritumoral radiomics based on CEM had an acceptable predictive performance in predicting NSLN metastasis in breast cancer, which could be seen as a supplementary predicting tool to help clinicians make appropriate surgical plans. The intratumoral and peritumoral CEM-based radiomics model could noninvasively predict NSLN metastasis in breast cancer patients before surgery.</description><identifier>ISSN: 0007-1285</identifier><identifier>EISSN: 1748-880X</identifier><identifier>DOI: 10.1259/bjr.20220068</identifier><identifier>PMID: 36542866</identifier><language>eng</language><publisher>England: The British Institute of Radiology</publisher><subject>Diagnostic Radiology: Full Paper</subject><ispartof>British journal of radiology, 2023-02, Vol.96 (1143), p.20220068-20220068</ispartof><rights>2022 The Authors. Published by the British Institute of Radiology 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-7f6bb64494be8d84a5a8a49e27ec29f96636ee3e45935ab64f8ed7e7cef366263</citedby><cites>FETCH-LOGICAL-c346t-7f6bb64494be8d84a5a8a49e27ec29f96636ee3e45935ab64f8ed7e7cef366263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36542866$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Fan</creatorcontrib><creatorcontrib>Li, Qin</creatorcontrib><creatorcontrib>Wang, Zhongyi</creatorcontrib><creatorcontrib>Shi, Yinghong</creatorcontrib><creatorcontrib>Ma, Heng</creatorcontrib><creatorcontrib>Zhang, Haicheng</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Zhang, Ran</creatorcontrib><creatorcontrib>Duan, Shaofeng</creatorcontrib><creatorcontrib>Gu, Yajia</creatorcontrib><creatorcontrib>Mao, Ning</creatorcontrib><creatorcontrib>Xie, Haizhu</creatorcontrib><title>Intratumoral and peritumoral radiomics for preoperatively predicting the axillary non-sentinel lymph node metastasis in breast cancer on the basis of contrast-enhanced mammography: a multicenter study</title><title>British journal of radiology</title><addtitle>Br J Radiol</addtitle><description>To develop and test a contrast-enhanced mammography (CEM)-based radiomics model using intratumoral and peritumoral regions to predict non-sentinel lymph node (NSLN) metastasis in breast cancer before surgery. This multicenter study included 365 breast cancer patients with sentinel lymph node metastasis. Intratumoral regions of interest (ROIs) were manually delineated, and peritumoral ROIs (5 and 10 mm) were automatically obtained. Five models, including intratumoral model, peritumoral (5 and 10 mm) models, and intratumoral+peritumoral (5 and 10 mm) models, were constructed by support vector machine classifier on the basis of optimal features selected by variance threshold, SelectKbest, and least absolute shrinkage and selection operator algorithms. The predictive performance of radiomics models was evaluated by receiver operating characteristic curves. An external testing set was used to test the model. The Memorial Sloan Kettering Cancer Center (MSKCC) model was used to compare the predictive performance with radiomics model. The intratumoral ROI and intratumoral+peritumoral 10-mm ROI-based radiomics model achieved the best performance with an area under the curve (AUC) of 0.8000 (95% confidence interval [CI]: 0.6871-0.8266) in the internal testing set. In the external testing set, the AUC of radiomics model was 0.7567 (95% CI: 0.6717-0.8678), higher than that of MSKCC model (AUC = 0.6681, 95% CI: 0.5148-0.8213) ( = 0.361). The intratumoral and peritumoral radiomics based on CEM had an acceptable predictive performance in predicting NSLN metastasis in breast cancer, which could be seen as a supplementary predicting tool to help clinicians make appropriate surgical plans. The intratumoral and peritumoral CEM-based radiomics model could noninvasively predict NSLN metastasis in breast cancer patients before surgery.</description><subject>Diagnostic Radiology: Full Paper</subject><issn>0007-1285</issn><issn>1748-880X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVUcFu1TAQtBCIPgo3zshHDqQ4tuM4HJCqqkClSlxA4mY5zuY9V7EdbKcif9jPwmn7KpAsWbMznl3vIPS2Jmc1bbqP_U08o4RSQoR8hnZ1y2UlJfn1HO0IIW1VU9mcoFcp3Wyw6chLdMJEw6kUYofurnyOOi8uRD1h7Qc8Q7RHHPVgg7Mm4TFEPEcIhdXZ3sK0bnCwJlu_x_kAWP-x06Tjin3wVQJfCJjwtLr5UEoDYAdZp3JswtbjPkJB2GhvIOLg7z36ezaM2IRtrJQr8IdNMWCnnQv7qOfD-glr7JYpW1O6lMcpL8P6Gr0Y9ZTgzeN9in5-ufxx8a26_v716uL8ujKMi1y1o-h7wXnHe5CD5LrRUvMOaAuGdmMnBBMADHjTsUYX5ShhaKE1MDIhqGCn6POD77z0DoZthLIpNUfryudV0Fb9z3h7UPtwq7qubZisi8H7R4MYfi-QsnI2GSi78xCWpGjbtKThnPEi_fAgNTGkFGF8alMTtYWvSvjqGH6Rv_t3tCfxMW32F5gis3Q</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Lin, Fan</creator><creator>Li, Qin</creator><creator>Wang, Zhongyi</creator><creator>Shi, Yinghong</creator><creator>Ma, Heng</creator><creator>Zhang, Haicheng</creator><creator>Zhang, Kun</creator><creator>Yang, Ping</creator><creator>Zhang, Ran</creator><creator>Duan, Shaofeng</creator><creator>Gu, Yajia</creator><creator>Mao, Ning</creator><creator>Xie, Haizhu</creator><general>The British Institute of Radiology</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230201</creationdate><title>Intratumoral and peritumoral radiomics for preoperatively predicting the axillary non-sentinel lymph node metastasis in breast cancer on the basis of contrast-enhanced mammography: a multicenter study</title><author>Lin, Fan ; Li, Qin ; Wang, Zhongyi ; Shi, Yinghong ; Ma, Heng ; Zhang, Haicheng ; Zhang, Kun ; Yang, Ping ; Zhang, Ran ; Duan, Shaofeng ; Gu, Yajia ; Mao, Ning ; Xie, Haizhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-7f6bb64494be8d84a5a8a49e27ec29f96636ee3e45935ab64f8ed7e7cef366263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Diagnostic Radiology: Full Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Fan</creatorcontrib><creatorcontrib>Li, Qin</creatorcontrib><creatorcontrib>Wang, Zhongyi</creatorcontrib><creatorcontrib>Shi, Yinghong</creatorcontrib><creatorcontrib>Ma, Heng</creatorcontrib><creatorcontrib>Zhang, Haicheng</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Zhang, Ran</creatorcontrib><creatorcontrib>Duan, Shaofeng</creatorcontrib><creatorcontrib>Gu, Yajia</creatorcontrib><creatorcontrib>Mao, Ning</creatorcontrib><creatorcontrib>Xie, Haizhu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>British journal of radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Fan</au><au>Li, Qin</au><au>Wang, Zhongyi</au><au>Shi, Yinghong</au><au>Ma, Heng</au><au>Zhang, Haicheng</au><au>Zhang, Kun</au><au>Yang, Ping</au><au>Zhang, Ran</au><au>Duan, Shaofeng</au><au>Gu, Yajia</au><au>Mao, Ning</au><au>Xie, Haizhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intratumoral and peritumoral radiomics for preoperatively predicting the axillary non-sentinel lymph node metastasis in breast cancer on the basis of contrast-enhanced mammography: a multicenter study</atitle><jtitle>British journal of radiology</jtitle><addtitle>Br J Radiol</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>96</volume><issue>1143</issue><spage>20220068</spage><epage>20220068</epage><pages>20220068-20220068</pages><issn>0007-1285</issn><eissn>1748-880X</eissn><abstract>To develop and test a contrast-enhanced mammography (CEM)-based radiomics model using intratumoral and peritumoral regions to predict non-sentinel lymph node (NSLN) metastasis in breast cancer before surgery. This multicenter study included 365 breast cancer patients with sentinel lymph node metastasis. Intratumoral regions of interest (ROIs) were manually delineated, and peritumoral ROIs (5 and 10 mm) were automatically obtained. Five models, including intratumoral model, peritumoral (5 and 10 mm) models, and intratumoral+peritumoral (5 and 10 mm) models, were constructed by support vector machine classifier on the basis of optimal features selected by variance threshold, SelectKbest, and least absolute shrinkage and selection operator algorithms. The predictive performance of radiomics models was evaluated by receiver operating characteristic curves. An external testing set was used to test the model. The Memorial Sloan Kettering Cancer Center (MSKCC) model was used to compare the predictive performance with radiomics model. The intratumoral ROI and intratumoral+peritumoral 10-mm ROI-based radiomics model achieved the best performance with an area under the curve (AUC) of 0.8000 (95% confidence interval [CI]: 0.6871-0.8266) in the internal testing set. In the external testing set, the AUC of radiomics model was 0.7567 (95% CI: 0.6717-0.8678), higher than that of MSKCC model (AUC = 0.6681, 95% CI: 0.5148-0.8213) ( = 0.361). The intratumoral and peritumoral radiomics based on CEM had an acceptable predictive performance in predicting NSLN metastasis in breast cancer, which could be seen as a supplementary predicting tool to help clinicians make appropriate surgical plans. The intratumoral and peritumoral CEM-based radiomics model could noninvasively predict NSLN metastasis in breast cancer patients before surgery.</abstract><cop>England</cop><pub>The British Institute of Radiology</pub><pmid>36542866</pmid><doi>10.1259/bjr.20220068</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0007-1285
ispartof British journal of radiology, 2023-02, Vol.96 (1143), p.20220068-20220068
issn 0007-1285
1748-880X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9975381
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current)
subjects Diagnostic Radiology: Full Paper
title Intratumoral and peritumoral radiomics for preoperatively predicting the axillary non-sentinel lymph node metastasis in breast cancer on the basis of contrast-enhanced mammography: a multicenter study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intratumoral%20and%20peritumoral%20radiomics%20for%20preoperatively%20predicting%20the%20axillary%20non-sentinel%20lymph%20node%20metastasis%20in%20breast%20cancer%20on%20the%20basis%20of%20contrast-enhanced%20mammography:%20a%20multicenter%20study&rft.jtitle=British%20journal%20of%20radiology&rft.au=Lin,%20Fan&rft.date=2023-02-01&rft.volume=96&rft.issue=1143&rft.spage=20220068&rft.epage=20220068&rft.pages=20220068-20220068&rft.issn=0007-1285&rft.eissn=1748-880X&rft_id=info:doi/10.1259/bjr.20220068&rft_dat=%3Cproquest_pubme%3E2757054434%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2757054434&rft_id=info:pmid/36542866&rfr_iscdi=true