Intratumoral and peritumoral radiomics for preoperatively predicting the axillary non-sentinel lymph node metastasis in breast cancer on the basis of contrast-enhanced mammography: a multicenter study
To develop and test a contrast-enhanced mammography (CEM)-based radiomics model using intratumoral and peritumoral regions to predict non-sentinel lymph node (NSLN) metastasis in breast cancer before surgery. This multicenter study included 365 breast cancer patients with sentinel lymph node metasta...
Gespeichert in:
Veröffentlicht in: | British journal of radiology 2023-02, Vol.96 (1143), p.20220068-20220068 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20220068 |
---|---|
container_issue | 1143 |
container_start_page | 20220068 |
container_title | British journal of radiology |
container_volume | 96 |
creator | Lin, Fan Li, Qin Wang, Zhongyi Shi, Yinghong Ma, Heng Zhang, Haicheng Zhang, Kun Yang, Ping Zhang, Ran Duan, Shaofeng Gu, Yajia Mao, Ning Xie, Haizhu |
description | To develop and test a contrast-enhanced mammography (CEM)-based radiomics model using intratumoral and peritumoral regions to predict non-sentinel lymph node (NSLN) metastasis in breast cancer before surgery.
This multicenter study included 365 breast cancer patients with sentinel lymph node metastasis. Intratumoral regions of interest (ROIs) were manually delineated, and peritumoral ROIs (5 and 10 mm) were automatically obtained. Five models, including intratumoral model, peritumoral (5 and 10 mm) models, and intratumoral+peritumoral (5 and 10 mm) models, were constructed by support vector machine classifier on the basis of optimal features selected by variance threshold, SelectKbest, and least absolute shrinkage and selection operator algorithms. The predictive performance of radiomics models was evaluated by receiver operating characteristic curves. An external testing set was used to test the model. The Memorial Sloan Kettering Cancer Center (MSKCC) model was used to compare the predictive performance with radiomics model.
The intratumoral ROI and intratumoral+peritumoral 10-mm ROI-based radiomics model achieved the best performance with an area under the curve (AUC) of 0.8000 (95% confidence interval [CI]: 0.6871-0.8266) in the internal testing set. In the external testing set, the AUC of radiomics model was 0.7567 (95% CI: 0.6717-0.8678), higher than that of MSKCC model (AUC = 0.6681, 95% CI: 0.5148-0.8213) (
= 0.361).
The intratumoral and peritumoral radiomics based on CEM had an acceptable predictive performance in predicting NSLN metastasis in breast cancer, which could be seen as a supplementary predicting tool to help clinicians make appropriate surgical plans.
The intratumoral and peritumoral CEM-based radiomics model could noninvasively predict NSLN metastasis in breast cancer patients before surgery. |
doi_str_mv | 10.1259/bjr.20220068 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9975381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2757054434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-7f6bb64494be8d84a5a8a49e27ec29f96636ee3e45935ab64f8ed7e7cef366263</originalsourceid><addsrcrecordid>eNpVUcFu1TAQtBCIPgo3zshHDqQ4tuM4HJCqqkClSlxA4mY5zuY9V7EdbKcif9jPwmn7KpAsWbMznl3vIPS2Jmc1bbqP_U08o4RSQoR8hnZ1y2UlJfn1HO0IIW1VU9mcoFcp3Wyw6chLdMJEw6kUYofurnyOOi8uRD1h7Qc8Q7RHHPVgg7Mm4TFEPEcIhdXZ3sK0bnCwJlu_x_kAWP-x06Tjin3wVQJfCJjwtLr5UEoDYAdZp3JswtbjPkJB2GhvIOLg7z36ezaM2IRtrJQr8IdNMWCnnQv7qOfD-glr7JYpW1O6lMcpL8P6Gr0Y9ZTgzeN9in5-ufxx8a26_v716uL8ujKMi1y1o-h7wXnHe5CD5LrRUvMOaAuGdmMnBBMADHjTsUYX5ShhaKE1MDIhqGCn6POD77z0DoZthLIpNUfryudV0Fb9z3h7UPtwq7qubZisi8H7R4MYfi-QsnI2GSi78xCWpGjbtKThnPEi_fAgNTGkFGF8alMTtYWvSvjqGH6Rv_t3tCfxMW32F5gis3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757054434</pqid></control><display><type>article</type><title>Intratumoral and peritumoral radiomics for preoperatively predicting the axillary non-sentinel lymph node metastasis in breast cancer on the basis of contrast-enhanced mammography: a multicenter study</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Lin, Fan ; Li, Qin ; Wang, Zhongyi ; Shi, Yinghong ; Ma, Heng ; Zhang, Haicheng ; Zhang, Kun ; Yang, Ping ; Zhang, Ran ; Duan, Shaofeng ; Gu, Yajia ; Mao, Ning ; Xie, Haizhu</creator><creatorcontrib>Lin, Fan ; Li, Qin ; Wang, Zhongyi ; Shi, Yinghong ; Ma, Heng ; Zhang, Haicheng ; Zhang, Kun ; Yang, Ping ; Zhang, Ran ; Duan, Shaofeng ; Gu, Yajia ; Mao, Ning ; Xie, Haizhu</creatorcontrib><description>To develop and test a contrast-enhanced mammography (CEM)-based radiomics model using intratumoral and peritumoral regions to predict non-sentinel lymph node (NSLN) metastasis in breast cancer before surgery.
This multicenter study included 365 breast cancer patients with sentinel lymph node metastasis. Intratumoral regions of interest (ROIs) were manually delineated, and peritumoral ROIs (5 and 10 mm) were automatically obtained. Five models, including intratumoral model, peritumoral (5 and 10 mm) models, and intratumoral+peritumoral (5 and 10 mm) models, were constructed by support vector machine classifier on the basis of optimal features selected by variance threshold, SelectKbest, and least absolute shrinkage and selection operator algorithms. The predictive performance of radiomics models was evaluated by receiver operating characteristic curves. An external testing set was used to test the model. The Memorial Sloan Kettering Cancer Center (MSKCC) model was used to compare the predictive performance with radiomics model.
The intratumoral ROI and intratumoral+peritumoral 10-mm ROI-based radiomics model achieved the best performance with an area under the curve (AUC) of 0.8000 (95% confidence interval [CI]: 0.6871-0.8266) in the internal testing set. In the external testing set, the AUC of radiomics model was 0.7567 (95% CI: 0.6717-0.8678), higher than that of MSKCC model (AUC = 0.6681, 95% CI: 0.5148-0.8213) (
= 0.361).
The intratumoral and peritumoral radiomics based on CEM had an acceptable predictive performance in predicting NSLN metastasis in breast cancer, which could be seen as a supplementary predicting tool to help clinicians make appropriate surgical plans.
The intratumoral and peritumoral CEM-based radiomics model could noninvasively predict NSLN metastasis in breast cancer patients before surgery.</description><identifier>ISSN: 0007-1285</identifier><identifier>EISSN: 1748-880X</identifier><identifier>DOI: 10.1259/bjr.20220068</identifier><identifier>PMID: 36542866</identifier><language>eng</language><publisher>England: The British Institute of Radiology</publisher><subject>Diagnostic Radiology: Full Paper</subject><ispartof>British journal of radiology, 2023-02, Vol.96 (1143), p.20220068-20220068</ispartof><rights>2022 The Authors. Published by the British Institute of Radiology 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-7f6bb64494be8d84a5a8a49e27ec29f96636ee3e45935ab64f8ed7e7cef366263</citedby><cites>FETCH-LOGICAL-c346t-7f6bb64494be8d84a5a8a49e27ec29f96636ee3e45935ab64f8ed7e7cef366263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36542866$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Fan</creatorcontrib><creatorcontrib>Li, Qin</creatorcontrib><creatorcontrib>Wang, Zhongyi</creatorcontrib><creatorcontrib>Shi, Yinghong</creatorcontrib><creatorcontrib>Ma, Heng</creatorcontrib><creatorcontrib>Zhang, Haicheng</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Zhang, Ran</creatorcontrib><creatorcontrib>Duan, Shaofeng</creatorcontrib><creatorcontrib>Gu, Yajia</creatorcontrib><creatorcontrib>Mao, Ning</creatorcontrib><creatorcontrib>Xie, Haizhu</creatorcontrib><title>Intratumoral and peritumoral radiomics for preoperatively predicting the axillary non-sentinel lymph node metastasis in breast cancer on the basis of contrast-enhanced mammography: a multicenter study</title><title>British journal of radiology</title><addtitle>Br J Radiol</addtitle><description>To develop and test a contrast-enhanced mammography (CEM)-based radiomics model using intratumoral and peritumoral regions to predict non-sentinel lymph node (NSLN) metastasis in breast cancer before surgery.
This multicenter study included 365 breast cancer patients with sentinel lymph node metastasis. Intratumoral regions of interest (ROIs) were manually delineated, and peritumoral ROIs (5 and 10 mm) were automatically obtained. Five models, including intratumoral model, peritumoral (5 and 10 mm) models, and intratumoral+peritumoral (5 and 10 mm) models, were constructed by support vector machine classifier on the basis of optimal features selected by variance threshold, SelectKbest, and least absolute shrinkage and selection operator algorithms. The predictive performance of radiomics models was evaluated by receiver operating characteristic curves. An external testing set was used to test the model. The Memorial Sloan Kettering Cancer Center (MSKCC) model was used to compare the predictive performance with radiomics model.
The intratumoral ROI and intratumoral+peritumoral 10-mm ROI-based radiomics model achieved the best performance with an area under the curve (AUC) of 0.8000 (95% confidence interval [CI]: 0.6871-0.8266) in the internal testing set. In the external testing set, the AUC of radiomics model was 0.7567 (95% CI: 0.6717-0.8678), higher than that of MSKCC model (AUC = 0.6681, 95% CI: 0.5148-0.8213) (
= 0.361).
The intratumoral and peritumoral radiomics based on CEM had an acceptable predictive performance in predicting NSLN metastasis in breast cancer, which could be seen as a supplementary predicting tool to help clinicians make appropriate surgical plans.
The intratumoral and peritumoral CEM-based radiomics model could noninvasively predict NSLN metastasis in breast cancer patients before surgery.</description><subject>Diagnostic Radiology: Full Paper</subject><issn>0007-1285</issn><issn>1748-880X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVUcFu1TAQtBCIPgo3zshHDqQ4tuM4HJCqqkClSlxA4mY5zuY9V7EdbKcif9jPwmn7KpAsWbMznl3vIPS2Jmc1bbqP_U08o4RSQoR8hnZ1y2UlJfn1HO0IIW1VU9mcoFcp3Wyw6chLdMJEw6kUYofurnyOOi8uRD1h7Qc8Q7RHHPVgg7Mm4TFEPEcIhdXZ3sK0bnCwJlu_x_kAWP-x06Tjin3wVQJfCJjwtLr5UEoDYAdZp3JswtbjPkJB2GhvIOLg7z36ezaM2IRtrJQr8IdNMWCnnQv7qOfD-glr7JYpW1O6lMcpL8P6Gr0Y9ZTgzeN9in5-ufxx8a26_v716uL8ujKMi1y1o-h7wXnHe5CD5LrRUvMOaAuGdmMnBBMADHjTsUYX5ShhaKE1MDIhqGCn6POD77z0DoZthLIpNUfryudV0Fb9z3h7UPtwq7qubZisi8H7R4MYfi-QsnI2GSi78xCWpGjbtKThnPEi_fAgNTGkFGF8alMTtYWvSvjqGH6Rv_t3tCfxMW32F5gis3Q</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Lin, Fan</creator><creator>Li, Qin</creator><creator>Wang, Zhongyi</creator><creator>Shi, Yinghong</creator><creator>Ma, Heng</creator><creator>Zhang, Haicheng</creator><creator>Zhang, Kun</creator><creator>Yang, Ping</creator><creator>Zhang, Ran</creator><creator>Duan, Shaofeng</creator><creator>Gu, Yajia</creator><creator>Mao, Ning</creator><creator>Xie, Haizhu</creator><general>The British Institute of Radiology</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230201</creationdate><title>Intratumoral and peritumoral radiomics for preoperatively predicting the axillary non-sentinel lymph node metastasis in breast cancer on the basis of contrast-enhanced mammography: a multicenter study</title><author>Lin, Fan ; Li, Qin ; Wang, Zhongyi ; Shi, Yinghong ; Ma, Heng ; Zhang, Haicheng ; Zhang, Kun ; Yang, Ping ; Zhang, Ran ; Duan, Shaofeng ; Gu, Yajia ; Mao, Ning ; Xie, Haizhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-7f6bb64494be8d84a5a8a49e27ec29f96636ee3e45935ab64f8ed7e7cef366263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Diagnostic Radiology: Full Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Fan</creatorcontrib><creatorcontrib>Li, Qin</creatorcontrib><creatorcontrib>Wang, Zhongyi</creatorcontrib><creatorcontrib>Shi, Yinghong</creatorcontrib><creatorcontrib>Ma, Heng</creatorcontrib><creatorcontrib>Zhang, Haicheng</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Zhang, Ran</creatorcontrib><creatorcontrib>Duan, Shaofeng</creatorcontrib><creatorcontrib>Gu, Yajia</creatorcontrib><creatorcontrib>Mao, Ning</creatorcontrib><creatorcontrib>Xie, Haizhu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>British journal of radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Fan</au><au>Li, Qin</au><au>Wang, Zhongyi</au><au>Shi, Yinghong</au><au>Ma, Heng</au><au>Zhang, Haicheng</au><au>Zhang, Kun</au><au>Yang, Ping</au><au>Zhang, Ran</au><au>Duan, Shaofeng</au><au>Gu, Yajia</au><au>Mao, Ning</au><au>Xie, Haizhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intratumoral and peritumoral radiomics for preoperatively predicting the axillary non-sentinel lymph node metastasis in breast cancer on the basis of contrast-enhanced mammography: a multicenter study</atitle><jtitle>British journal of radiology</jtitle><addtitle>Br J Radiol</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>96</volume><issue>1143</issue><spage>20220068</spage><epage>20220068</epage><pages>20220068-20220068</pages><issn>0007-1285</issn><eissn>1748-880X</eissn><abstract>To develop and test a contrast-enhanced mammography (CEM)-based radiomics model using intratumoral and peritumoral regions to predict non-sentinel lymph node (NSLN) metastasis in breast cancer before surgery.
This multicenter study included 365 breast cancer patients with sentinel lymph node metastasis. Intratumoral regions of interest (ROIs) were manually delineated, and peritumoral ROIs (5 and 10 mm) were automatically obtained. Five models, including intratumoral model, peritumoral (5 and 10 mm) models, and intratumoral+peritumoral (5 and 10 mm) models, were constructed by support vector machine classifier on the basis of optimal features selected by variance threshold, SelectKbest, and least absolute shrinkage and selection operator algorithms. The predictive performance of radiomics models was evaluated by receiver operating characteristic curves. An external testing set was used to test the model. The Memorial Sloan Kettering Cancer Center (MSKCC) model was used to compare the predictive performance with radiomics model.
The intratumoral ROI and intratumoral+peritumoral 10-mm ROI-based radiomics model achieved the best performance with an area under the curve (AUC) of 0.8000 (95% confidence interval [CI]: 0.6871-0.8266) in the internal testing set. In the external testing set, the AUC of radiomics model was 0.7567 (95% CI: 0.6717-0.8678), higher than that of MSKCC model (AUC = 0.6681, 95% CI: 0.5148-0.8213) (
= 0.361).
The intratumoral and peritumoral radiomics based on CEM had an acceptable predictive performance in predicting NSLN metastasis in breast cancer, which could be seen as a supplementary predicting tool to help clinicians make appropriate surgical plans.
The intratumoral and peritumoral CEM-based radiomics model could noninvasively predict NSLN metastasis in breast cancer patients before surgery.</abstract><cop>England</cop><pub>The British Institute of Radiology</pub><pmid>36542866</pmid><doi>10.1259/bjr.20220068</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-1285 |
ispartof | British journal of radiology, 2023-02, Vol.96 (1143), p.20220068-20220068 |
issn | 0007-1285 1748-880X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9975381 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current) |
subjects | Diagnostic Radiology: Full Paper |
title | Intratumoral and peritumoral radiomics for preoperatively predicting the axillary non-sentinel lymph node metastasis in breast cancer on the basis of contrast-enhanced mammography: a multicenter study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intratumoral%20and%20peritumoral%20radiomics%20for%20preoperatively%20predicting%20the%20axillary%20non-sentinel%20lymph%20node%20metastasis%20in%20breast%20cancer%20on%20the%20basis%20of%20contrast-enhanced%20mammography:%20a%20multicenter%20study&rft.jtitle=British%20journal%20of%20radiology&rft.au=Lin,%20Fan&rft.date=2023-02-01&rft.volume=96&rft.issue=1143&rft.spage=20220068&rft.epage=20220068&rft.pages=20220068-20220068&rft.issn=0007-1285&rft.eissn=1748-880X&rft_id=info:doi/10.1259/bjr.20220068&rft_dat=%3Cproquest_pubme%3E2757054434%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2757054434&rft_id=info:pmid/36542866&rfr_iscdi=true |