Development of a model to predict combined antidepressant medication and psychotherapy treatment response for depression among veterans

Although research shows that more depressed patients respond to combined antidepressants (ADM) and psychotherapy than either alone, many patients do not respond even to combined treatment. A reliable prediction model for this could help treatment decision-making. We attempted to create such a model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of affective disorders 2023-04, Vol.326, p.111-119
Hauptverfasser: Bossarte, Robert M., Ross, Eric L., Liu, Howard, Turner, Brett, Bryant, Corey, Zainal, Nur Hani, Puac-Polanco, Victor, Ziobrowski, Hannah N., Cui, Ruifeng, Cipriani, Andrea, Furukawa, Toshiaki A., Leung, Lucinda B., Joormann, Jutta, Nierenberg, Andrew A., Oslin, David W., Pigeon, Wilfred R., Post, Edward P., Zaslavsky, Alan M., Zubizarreta, Jose R., Luedtke, Alex, Kennedy, Chris J., Kessler, Ronald C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue
container_start_page 111
container_title Journal of affective disorders
container_volume 326
creator Bossarte, Robert M.
Ross, Eric L.
Liu, Howard
Turner, Brett
Bryant, Corey
Zainal, Nur Hani
Puac-Polanco, Victor
Ziobrowski, Hannah N.
Cui, Ruifeng
Cipriani, Andrea
Furukawa, Toshiaki A.
Leung, Lucinda B.
Joormann, Jutta
Nierenberg, Andrew A.
Oslin, David W.
Pigeon, Wilfred R.
Post, Edward P.
Zaslavsky, Alan M.
Zubizarreta, Jose R.
Luedtke, Alex
Kennedy, Chris J.
Kessler, Ronald C.
description Although research shows that more depressed patients respond to combined antidepressants (ADM) and psychotherapy than either alone, many patients do not respond even to combined treatment. A reliable prediction model for this could help treatment decision-making. We attempted to create such a model using machine learning methods among patients in the US Veterans Health Administration (VHA). A 2018–2020 national sample of VHA patients beginning combined depression treatment completed self-report assessments at baseline and 3 months (n = 658). A learning model was developed using baseline self-report, administrative, and geospatial data to predict 3-month treatment response defined by reductions in the Quick Inventory of Depression Symptomatology Self-Report and/or in the Sheehan Disability Scale. The model was developed in a 70 % training sample and tested in the remaining 30 % test sample. 30.0 % of patients responded to treatment. The prediction model had a test sample AUC-ROC of 0.657. A strong gradient was found in probability of treatment response from 52.7 % in the highest predicted quintile to 14.4 % in the lowest predicted quintile. The most important predictors were episode characteristics (symptoms, comorbidities, history), personality/psychological resilience, recent stressors, and treatment characteristics. Restrictions in sample definition, a low recruitment rate, and reliance on patient self-report rather than clinician assessments to determine treatment response limited the generalizability of results. A machine learning model could help depressed patients and providers predict likely response to combined ADM-psychotherapy. Parallel information about potential harms and costs of alternative treatments would be needed, though, to inform optimal treatment selection. •30 % of depressed Veterans Health Administration patients responded to combined antidepressant-psychotherapy treatment.•A machine learning model was developed to predict differential response.•The model was significantly predictive.•Parallel modeling across alternative treatments could help optimize treatment.
doi_str_mv 10.1016/j.jad.2023.01.082
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9975041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165032723001015</els_id><sourcerecordid>2771083825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-d113b142dfcd834ab779eb93f8d367bd322425d6bdf46ef04de18f22e56f2b3</originalsourceid><addsrcrecordid>eNp9kctu3CAUhlHVqpkmeYBsKpbd2OViG1uVKlXpLVKkLpI9wnDIMLLBBWakeYK-dpnMJGo3WYH4Lxz4ELqipKaEdh839UaZmhHGa0Jr0rNXaEVbwSvWUvEarYqnrQhn4gy9S2lDCOkGQd6iM94JMvScrtCfr7CDKSwz-IyDxQrPwcCEc8BLBON0xjrMo_NgsPLZGSjHKZUtng-yyi74ohi8pL1eh7yGqJY9zhFUfiwt9iX4BNiGiE_xx8wc_APeQS4Bny7QG6umBJen9Rzdff92f_2zuv314-b6y22lm5bmylDKR9owY7XpeaNGIQYYB257U940Gs5Yw1rTjcY2HVjSGKC9ZQzazrKRn6PPx9ZlO5bxdZkvqkku0c0q7mVQTv6veLeWD2Enh0G0pKGl4MOpIIbfW0hZzi5pmCblIWyTZEJQ0vOetcVKj1YdQ0oR7PM1lMgDPrmRBZ884JOEyoKvZN7_O99z4olXMXw6GqD80c5BlEk78LqgiKCzNMG9UP8Xbjawng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771083825</pqid></control><display><type>article</type><title>Development of a model to predict combined antidepressant medication and psychotherapy treatment response for depression among veterans</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bossarte, Robert M. ; Ross, Eric L. ; Liu, Howard ; Turner, Brett ; Bryant, Corey ; Zainal, Nur Hani ; Puac-Polanco, Victor ; Ziobrowski, Hannah N. ; Cui, Ruifeng ; Cipriani, Andrea ; Furukawa, Toshiaki A. ; Leung, Lucinda B. ; Joormann, Jutta ; Nierenberg, Andrew A. ; Oslin, David W. ; Pigeon, Wilfred R. ; Post, Edward P. ; Zaslavsky, Alan M. ; Zubizarreta, Jose R. ; Luedtke, Alex ; Kennedy, Chris J. ; Kessler, Ronald C.</creator><creatorcontrib>Bossarte, Robert M. ; Ross, Eric L. ; Liu, Howard ; Turner, Brett ; Bryant, Corey ; Zainal, Nur Hani ; Puac-Polanco, Victor ; Ziobrowski, Hannah N. ; Cui, Ruifeng ; Cipriani, Andrea ; Furukawa, Toshiaki A. ; Leung, Lucinda B. ; Joormann, Jutta ; Nierenberg, Andrew A. ; Oslin, David W. ; Pigeon, Wilfred R. ; Post, Edward P. ; Zaslavsky, Alan M. ; Zubizarreta, Jose R. ; Luedtke, Alex ; Kennedy, Chris J. ; Kessler, Ronald C.</creatorcontrib><description>Although research shows that more depressed patients respond to combined antidepressants (ADM) and psychotherapy than either alone, many patients do not respond even to combined treatment. A reliable prediction model for this could help treatment decision-making. We attempted to create such a model using machine learning methods among patients in the US Veterans Health Administration (VHA). A 2018–2020 national sample of VHA patients beginning combined depression treatment completed self-report assessments at baseline and 3 months (n = 658). A learning model was developed using baseline self-report, administrative, and geospatial data to predict 3-month treatment response defined by reductions in the Quick Inventory of Depression Symptomatology Self-Report and/or in the Sheehan Disability Scale. The model was developed in a 70 % training sample and tested in the remaining 30 % test sample. 30.0 % of patients responded to treatment. The prediction model had a test sample AUC-ROC of 0.657. A strong gradient was found in probability of treatment response from 52.7 % in the highest predicted quintile to 14.4 % in the lowest predicted quintile. The most important predictors were episode characteristics (symptoms, comorbidities, history), personality/psychological resilience, recent stressors, and treatment characteristics. Restrictions in sample definition, a low recruitment rate, and reliance on patient self-report rather than clinician assessments to determine treatment response limited the generalizability of results. A machine learning model could help depressed patients and providers predict likely response to combined ADM-psychotherapy. Parallel information about potential harms and costs of alternative treatments would be needed, though, to inform optimal treatment selection. •30 % of depressed Veterans Health Administration patients responded to combined antidepressant-psychotherapy treatment.•A machine learning model was developed to predict differential response.•The model was significantly predictive.•Parallel modeling across alternative treatments could help optimize treatment.</description><identifier>ISSN: 0165-0327</identifier><identifier>ISSN: 1573-2517</identifier><identifier>EISSN: 1573-2517</identifier><identifier>DOI: 10.1016/j.jad.2023.01.082</identifier><identifier>PMID: 36709831</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Antidepressant medication ; Antidepressive Agents - therapeutic use ; Clinical decision support ; Combined Modality Therapy ; Depression ; Depression - drug therapy ; Depression - psychology ; Humans ; Machine learning ; Psychotherapy - methods ; Treatment response ; Veterans ; Veterans Health Administration</subject><ispartof>Journal of affective disorders, 2023-04, Vol.326, p.111-119</ispartof><rights>2023 Elsevier B.V.</rights><rights>Copyright © 2023 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-d113b142dfcd834ab779eb93f8d367bd322425d6bdf46ef04de18f22e56f2b3</citedby><cites>FETCH-LOGICAL-c451t-d113b142dfcd834ab779eb93f8d367bd322425d6bdf46ef04de18f22e56f2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jad.2023.01.082$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36709831$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bossarte, Robert M.</creatorcontrib><creatorcontrib>Ross, Eric L.</creatorcontrib><creatorcontrib>Liu, Howard</creatorcontrib><creatorcontrib>Turner, Brett</creatorcontrib><creatorcontrib>Bryant, Corey</creatorcontrib><creatorcontrib>Zainal, Nur Hani</creatorcontrib><creatorcontrib>Puac-Polanco, Victor</creatorcontrib><creatorcontrib>Ziobrowski, Hannah N.</creatorcontrib><creatorcontrib>Cui, Ruifeng</creatorcontrib><creatorcontrib>Cipriani, Andrea</creatorcontrib><creatorcontrib>Furukawa, Toshiaki A.</creatorcontrib><creatorcontrib>Leung, Lucinda B.</creatorcontrib><creatorcontrib>Joormann, Jutta</creatorcontrib><creatorcontrib>Nierenberg, Andrew A.</creatorcontrib><creatorcontrib>Oslin, David W.</creatorcontrib><creatorcontrib>Pigeon, Wilfred R.</creatorcontrib><creatorcontrib>Post, Edward P.</creatorcontrib><creatorcontrib>Zaslavsky, Alan M.</creatorcontrib><creatorcontrib>Zubizarreta, Jose R.</creatorcontrib><creatorcontrib>Luedtke, Alex</creatorcontrib><creatorcontrib>Kennedy, Chris J.</creatorcontrib><creatorcontrib>Kessler, Ronald C.</creatorcontrib><title>Development of a model to predict combined antidepressant medication and psychotherapy treatment response for depression among veterans</title><title>Journal of affective disorders</title><addtitle>J Affect Disord</addtitle><description>Although research shows that more depressed patients respond to combined antidepressants (ADM) and psychotherapy than either alone, many patients do not respond even to combined treatment. A reliable prediction model for this could help treatment decision-making. We attempted to create such a model using machine learning methods among patients in the US Veterans Health Administration (VHA). A 2018–2020 national sample of VHA patients beginning combined depression treatment completed self-report assessments at baseline and 3 months (n = 658). A learning model was developed using baseline self-report, administrative, and geospatial data to predict 3-month treatment response defined by reductions in the Quick Inventory of Depression Symptomatology Self-Report and/or in the Sheehan Disability Scale. The model was developed in a 70 % training sample and tested in the remaining 30 % test sample. 30.0 % of patients responded to treatment. The prediction model had a test sample AUC-ROC of 0.657. A strong gradient was found in probability of treatment response from 52.7 % in the highest predicted quintile to 14.4 % in the lowest predicted quintile. The most important predictors were episode characteristics (symptoms, comorbidities, history), personality/psychological resilience, recent stressors, and treatment characteristics. Restrictions in sample definition, a low recruitment rate, and reliance on patient self-report rather than clinician assessments to determine treatment response limited the generalizability of results. A machine learning model could help depressed patients and providers predict likely response to combined ADM-psychotherapy. Parallel information about potential harms and costs of alternative treatments would be needed, though, to inform optimal treatment selection. •30 % of depressed Veterans Health Administration patients responded to combined antidepressant-psychotherapy treatment.•A machine learning model was developed to predict differential response.•The model was significantly predictive.•Parallel modeling across alternative treatments could help optimize treatment.</description><subject>Antidepressant medication</subject><subject>Antidepressive Agents - therapeutic use</subject><subject>Clinical decision support</subject><subject>Combined Modality Therapy</subject><subject>Depression</subject><subject>Depression - drug therapy</subject><subject>Depression - psychology</subject><subject>Humans</subject><subject>Machine learning</subject><subject>Psychotherapy - methods</subject><subject>Treatment response</subject><subject>Veterans</subject><subject>Veterans Health Administration</subject><issn>0165-0327</issn><issn>1573-2517</issn><issn>1573-2517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctu3CAUhlHVqpkmeYBsKpbd2OViG1uVKlXpLVKkLpI9wnDIMLLBBWakeYK-dpnMJGo3WYH4Lxz4ELqipKaEdh839UaZmhHGa0Jr0rNXaEVbwSvWUvEarYqnrQhn4gy9S2lDCOkGQd6iM94JMvScrtCfr7CDKSwz-IyDxQrPwcCEc8BLBON0xjrMo_NgsPLZGSjHKZUtng-yyi74ohi8pL1eh7yGqJY9zhFUfiwt9iX4BNiGiE_xx8wc_APeQS4Bny7QG6umBJen9Rzdff92f_2zuv314-b6y22lm5bmylDKR9owY7XpeaNGIQYYB257U940Gs5Yw1rTjcY2HVjSGKC9ZQzazrKRn6PPx9ZlO5bxdZkvqkku0c0q7mVQTv6veLeWD2Enh0G0pKGl4MOpIIbfW0hZzi5pmCblIWyTZEJQ0vOetcVKj1YdQ0oR7PM1lMgDPrmRBZ884JOEyoKvZN7_O99z4olXMXw6GqD80c5BlEk78LqgiKCzNMG9UP8Xbjawng</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Bossarte, Robert M.</creator><creator>Ross, Eric L.</creator><creator>Liu, Howard</creator><creator>Turner, Brett</creator><creator>Bryant, Corey</creator><creator>Zainal, Nur Hani</creator><creator>Puac-Polanco, Victor</creator><creator>Ziobrowski, Hannah N.</creator><creator>Cui, Ruifeng</creator><creator>Cipriani, Andrea</creator><creator>Furukawa, Toshiaki A.</creator><creator>Leung, Lucinda B.</creator><creator>Joormann, Jutta</creator><creator>Nierenberg, Andrew A.</creator><creator>Oslin, David W.</creator><creator>Pigeon, Wilfred R.</creator><creator>Post, Edward P.</creator><creator>Zaslavsky, Alan M.</creator><creator>Zubizarreta, Jose R.</creator><creator>Luedtke, Alex</creator><creator>Kennedy, Chris J.</creator><creator>Kessler, Ronald C.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230401</creationdate><title>Development of a model to predict combined antidepressant medication and psychotherapy treatment response for depression among veterans</title><author>Bossarte, Robert M. ; Ross, Eric L. ; Liu, Howard ; Turner, Brett ; Bryant, Corey ; Zainal, Nur Hani ; Puac-Polanco, Victor ; Ziobrowski, Hannah N. ; Cui, Ruifeng ; Cipriani, Andrea ; Furukawa, Toshiaki A. ; Leung, Lucinda B. ; Joormann, Jutta ; Nierenberg, Andrew A. ; Oslin, David W. ; Pigeon, Wilfred R. ; Post, Edward P. ; Zaslavsky, Alan M. ; Zubizarreta, Jose R. ; Luedtke, Alex ; Kennedy, Chris J. ; Kessler, Ronald C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-d113b142dfcd834ab779eb93f8d367bd322425d6bdf46ef04de18f22e56f2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antidepressant medication</topic><topic>Antidepressive Agents - therapeutic use</topic><topic>Clinical decision support</topic><topic>Combined Modality Therapy</topic><topic>Depression</topic><topic>Depression - drug therapy</topic><topic>Depression - psychology</topic><topic>Humans</topic><topic>Machine learning</topic><topic>Psychotherapy - methods</topic><topic>Treatment response</topic><topic>Veterans</topic><topic>Veterans Health Administration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bossarte, Robert M.</creatorcontrib><creatorcontrib>Ross, Eric L.</creatorcontrib><creatorcontrib>Liu, Howard</creatorcontrib><creatorcontrib>Turner, Brett</creatorcontrib><creatorcontrib>Bryant, Corey</creatorcontrib><creatorcontrib>Zainal, Nur Hani</creatorcontrib><creatorcontrib>Puac-Polanco, Victor</creatorcontrib><creatorcontrib>Ziobrowski, Hannah N.</creatorcontrib><creatorcontrib>Cui, Ruifeng</creatorcontrib><creatorcontrib>Cipriani, Andrea</creatorcontrib><creatorcontrib>Furukawa, Toshiaki A.</creatorcontrib><creatorcontrib>Leung, Lucinda B.</creatorcontrib><creatorcontrib>Joormann, Jutta</creatorcontrib><creatorcontrib>Nierenberg, Andrew A.</creatorcontrib><creatorcontrib>Oslin, David W.</creatorcontrib><creatorcontrib>Pigeon, Wilfred R.</creatorcontrib><creatorcontrib>Post, Edward P.</creatorcontrib><creatorcontrib>Zaslavsky, Alan M.</creatorcontrib><creatorcontrib>Zubizarreta, Jose R.</creatorcontrib><creatorcontrib>Luedtke, Alex</creatorcontrib><creatorcontrib>Kennedy, Chris J.</creatorcontrib><creatorcontrib>Kessler, Ronald C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of affective disorders</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bossarte, Robert M.</au><au>Ross, Eric L.</au><au>Liu, Howard</au><au>Turner, Brett</au><au>Bryant, Corey</au><au>Zainal, Nur Hani</au><au>Puac-Polanco, Victor</au><au>Ziobrowski, Hannah N.</au><au>Cui, Ruifeng</au><au>Cipriani, Andrea</au><au>Furukawa, Toshiaki A.</au><au>Leung, Lucinda B.</au><au>Joormann, Jutta</au><au>Nierenberg, Andrew A.</au><au>Oslin, David W.</au><au>Pigeon, Wilfred R.</au><au>Post, Edward P.</au><au>Zaslavsky, Alan M.</au><au>Zubizarreta, Jose R.</au><au>Luedtke, Alex</au><au>Kennedy, Chris J.</au><au>Kessler, Ronald C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a model to predict combined antidepressant medication and psychotherapy treatment response for depression among veterans</atitle><jtitle>Journal of affective disorders</jtitle><addtitle>J Affect Disord</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>326</volume><spage>111</spage><epage>119</epage><pages>111-119</pages><issn>0165-0327</issn><issn>1573-2517</issn><eissn>1573-2517</eissn><abstract>Although research shows that more depressed patients respond to combined antidepressants (ADM) and psychotherapy than either alone, many patients do not respond even to combined treatment. A reliable prediction model for this could help treatment decision-making. We attempted to create such a model using machine learning methods among patients in the US Veterans Health Administration (VHA). A 2018–2020 national sample of VHA patients beginning combined depression treatment completed self-report assessments at baseline and 3 months (n = 658). A learning model was developed using baseline self-report, administrative, and geospatial data to predict 3-month treatment response defined by reductions in the Quick Inventory of Depression Symptomatology Self-Report and/or in the Sheehan Disability Scale. The model was developed in a 70 % training sample and tested in the remaining 30 % test sample. 30.0 % of patients responded to treatment. The prediction model had a test sample AUC-ROC of 0.657. A strong gradient was found in probability of treatment response from 52.7 % in the highest predicted quintile to 14.4 % in the lowest predicted quintile. The most important predictors were episode characteristics (symptoms, comorbidities, history), personality/psychological resilience, recent stressors, and treatment characteristics. Restrictions in sample definition, a low recruitment rate, and reliance on patient self-report rather than clinician assessments to determine treatment response limited the generalizability of results. A machine learning model could help depressed patients and providers predict likely response to combined ADM-psychotherapy. Parallel information about potential harms and costs of alternative treatments would be needed, though, to inform optimal treatment selection. •30 % of depressed Veterans Health Administration patients responded to combined antidepressant-psychotherapy treatment.•A machine learning model was developed to predict differential response.•The model was significantly predictive.•Parallel modeling across alternative treatments could help optimize treatment.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>36709831</pmid><doi>10.1016/j.jad.2023.01.082</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-0327
ispartof Journal of affective disorders, 2023-04, Vol.326, p.111-119
issn 0165-0327
1573-2517
1573-2517
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9975041
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Antidepressant medication
Antidepressive Agents - therapeutic use
Clinical decision support
Combined Modality Therapy
Depression
Depression - drug therapy
Depression - psychology
Humans
Machine learning
Psychotherapy - methods
Treatment response
Veterans
Veterans Health Administration
title Development of a model to predict combined antidepressant medication and psychotherapy treatment response for depression among veterans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A51%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20model%20to%20predict%20combined%20antidepressant%20medication%20and%20psychotherapy%20treatment%20response%20for%20depression%20among%20veterans&rft.jtitle=Journal%20of%20affective%20disorders&rft.au=Bossarte,%20Robert%20M.&rft.date=2023-04-01&rft.volume=326&rft.spage=111&rft.epage=119&rft.pages=111-119&rft.issn=0165-0327&rft.eissn=1573-2517&rft_id=info:doi/10.1016/j.jad.2023.01.082&rft_dat=%3Cproquest_pubme%3E2771083825%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771083825&rft_id=info:pmid/36709831&rft_els_id=S0165032723001015&rfr_iscdi=true