Development of a model to predict combined antidepressant medication and psychotherapy treatment response for depression among veterans
Although research shows that more depressed patients respond to combined antidepressants (ADM) and psychotherapy than either alone, many patients do not respond even to combined treatment. A reliable prediction model for this could help treatment decision-making. We attempted to create such a model...
Gespeichert in:
Veröffentlicht in: | Journal of affective disorders 2023-04, Vol.326, p.111-119 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 119 |
---|---|
container_issue | |
container_start_page | 111 |
container_title | Journal of affective disorders |
container_volume | 326 |
creator | Bossarte, Robert M. Ross, Eric L. Liu, Howard Turner, Brett Bryant, Corey Zainal, Nur Hani Puac-Polanco, Victor Ziobrowski, Hannah N. Cui, Ruifeng Cipriani, Andrea Furukawa, Toshiaki A. Leung, Lucinda B. Joormann, Jutta Nierenberg, Andrew A. Oslin, David W. Pigeon, Wilfred R. Post, Edward P. Zaslavsky, Alan M. Zubizarreta, Jose R. Luedtke, Alex Kennedy, Chris J. Kessler, Ronald C. |
description | Although research shows that more depressed patients respond to combined antidepressants (ADM) and psychotherapy than either alone, many patients do not respond even to combined treatment. A reliable prediction model for this could help treatment decision-making. We attempted to create such a model using machine learning methods among patients in the US Veterans Health Administration (VHA).
A 2018–2020 national sample of VHA patients beginning combined depression treatment completed self-report assessments at baseline and 3 months (n = 658). A learning model was developed using baseline self-report, administrative, and geospatial data to predict 3-month treatment response defined by reductions in the Quick Inventory of Depression Symptomatology Self-Report and/or in the Sheehan Disability Scale. The model was developed in a 70 % training sample and tested in the remaining 30 % test sample.
30.0 % of patients responded to treatment. The prediction model had a test sample AUC-ROC of 0.657. A strong gradient was found in probability of treatment response from 52.7 % in the highest predicted quintile to 14.4 % in the lowest predicted quintile. The most important predictors were episode characteristics (symptoms, comorbidities, history), personality/psychological resilience, recent stressors, and treatment characteristics.
Restrictions in sample definition, a low recruitment rate, and reliance on patient self-report rather than clinician assessments to determine treatment response limited the generalizability of results.
A machine learning model could help depressed patients and providers predict likely response to combined ADM-psychotherapy. Parallel information about potential harms and costs of alternative treatments would be needed, though, to inform optimal treatment selection.
•30 % of depressed Veterans Health Administration patients responded to combined antidepressant-psychotherapy treatment.•A machine learning model was developed to predict differential response.•The model was significantly predictive.•Parallel modeling across alternative treatments could help optimize treatment. |
doi_str_mv | 10.1016/j.jad.2023.01.082 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9975041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165032723001015</els_id><sourcerecordid>2771083825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-d113b142dfcd834ab779eb93f8d367bd322425d6bdf46ef04de18f22e56f2b3</originalsourceid><addsrcrecordid>eNp9kctu3CAUhlHVqpkmeYBsKpbd2OViG1uVKlXpLVKkLpI9wnDIMLLBBWakeYK-dpnMJGo3WYH4Lxz4ELqipKaEdh839UaZmhHGa0Jr0rNXaEVbwSvWUvEarYqnrQhn4gy9S2lDCOkGQd6iM94JMvScrtCfr7CDKSwz-IyDxQrPwcCEc8BLBON0xjrMo_NgsPLZGSjHKZUtng-yyi74ohi8pL1eh7yGqJY9zhFUfiwt9iX4BNiGiE_xx8wc_APeQS4Bny7QG6umBJen9Rzdff92f_2zuv314-b6y22lm5bmylDKR9owY7XpeaNGIQYYB257U940Gs5Yw1rTjcY2HVjSGKC9ZQzazrKRn6PPx9ZlO5bxdZkvqkku0c0q7mVQTv6veLeWD2Enh0G0pKGl4MOpIIbfW0hZzi5pmCblIWyTZEJQ0vOetcVKj1YdQ0oR7PM1lMgDPrmRBZ884JOEyoKvZN7_O99z4olXMXw6GqD80c5BlEk78LqgiKCzNMG9UP8Xbjawng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771083825</pqid></control><display><type>article</type><title>Development of a model to predict combined antidepressant medication and psychotherapy treatment response for depression among veterans</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bossarte, Robert M. ; Ross, Eric L. ; Liu, Howard ; Turner, Brett ; Bryant, Corey ; Zainal, Nur Hani ; Puac-Polanco, Victor ; Ziobrowski, Hannah N. ; Cui, Ruifeng ; Cipriani, Andrea ; Furukawa, Toshiaki A. ; Leung, Lucinda B. ; Joormann, Jutta ; Nierenberg, Andrew A. ; Oslin, David W. ; Pigeon, Wilfred R. ; Post, Edward P. ; Zaslavsky, Alan M. ; Zubizarreta, Jose R. ; Luedtke, Alex ; Kennedy, Chris J. ; Kessler, Ronald C.</creator><creatorcontrib>Bossarte, Robert M. ; Ross, Eric L. ; Liu, Howard ; Turner, Brett ; Bryant, Corey ; Zainal, Nur Hani ; Puac-Polanco, Victor ; Ziobrowski, Hannah N. ; Cui, Ruifeng ; Cipriani, Andrea ; Furukawa, Toshiaki A. ; Leung, Lucinda B. ; Joormann, Jutta ; Nierenberg, Andrew A. ; Oslin, David W. ; Pigeon, Wilfred R. ; Post, Edward P. ; Zaslavsky, Alan M. ; Zubizarreta, Jose R. ; Luedtke, Alex ; Kennedy, Chris J. ; Kessler, Ronald C.</creatorcontrib><description>Although research shows that more depressed patients respond to combined antidepressants (ADM) and psychotherapy than either alone, many patients do not respond even to combined treatment. A reliable prediction model for this could help treatment decision-making. We attempted to create such a model using machine learning methods among patients in the US Veterans Health Administration (VHA).
A 2018–2020 national sample of VHA patients beginning combined depression treatment completed self-report assessments at baseline and 3 months (n = 658). A learning model was developed using baseline self-report, administrative, and geospatial data to predict 3-month treatment response defined by reductions in the Quick Inventory of Depression Symptomatology Self-Report and/or in the Sheehan Disability Scale. The model was developed in a 70 % training sample and tested in the remaining 30 % test sample.
30.0 % of patients responded to treatment. The prediction model had a test sample AUC-ROC of 0.657. A strong gradient was found in probability of treatment response from 52.7 % in the highest predicted quintile to 14.4 % in the lowest predicted quintile. The most important predictors were episode characteristics (symptoms, comorbidities, history), personality/psychological resilience, recent stressors, and treatment characteristics.
Restrictions in sample definition, a low recruitment rate, and reliance on patient self-report rather than clinician assessments to determine treatment response limited the generalizability of results.
A machine learning model could help depressed patients and providers predict likely response to combined ADM-psychotherapy. Parallel information about potential harms and costs of alternative treatments would be needed, though, to inform optimal treatment selection.
•30 % of depressed Veterans Health Administration patients responded to combined antidepressant-psychotherapy treatment.•A machine learning model was developed to predict differential response.•The model was significantly predictive.•Parallel modeling across alternative treatments could help optimize treatment.</description><identifier>ISSN: 0165-0327</identifier><identifier>ISSN: 1573-2517</identifier><identifier>EISSN: 1573-2517</identifier><identifier>DOI: 10.1016/j.jad.2023.01.082</identifier><identifier>PMID: 36709831</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Antidepressant medication ; Antidepressive Agents - therapeutic use ; Clinical decision support ; Combined Modality Therapy ; Depression ; Depression - drug therapy ; Depression - psychology ; Humans ; Machine learning ; Psychotherapy - methods ; Treatment response ; Veterans ; Veterans Health Administration</subject><ispartof>Journal of affective disorders, 2023-04, Vol.326, p.111-119</ispartof><rights>2023 Elsevier B.V.</rights><rights>Copyright © 2023 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-d113b142dfcd834ab779eb93f8d367bd322425d6bdf46ef04de18f22e56f2b3</citedby><cites>FETCH-LOGICAL-c451t-d113b142dfcd834ab779eb93f8d367bd322425d6bdf46ef04de18f22e56f2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jad.2023.01.082$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36709831$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bossarte, Robert M.</creatorcontrib><creatorcontrib>Ross, Eric L.</creatorcontrib><creatorcontrib>Liu, Howard</creatorcontrib><creatorcontrib>Turner, Brett</creatorcontrib><creatorcontrib>Bryant, Corey</creatorcontrib><creatorcontrib>Zainal, Nur Hani</creatorcontrib><creatorcontrib>Puac-Polanco, Victor</creatorcontrib><creatorcontrib>Ziobrowski, Hannah N.</creatorcontrib><creatorcontrib>Cui, Ruifeng</creatorcontrib><creatorcontrib>Cipriani, Andrea</creatorcontrib><creatorcontrib>Furukawa, Toshiaki A.</creatorcontrib><creatorcontrib>Leung, Lucinda B.</creatorcontrib><creatorcontrib>Joormann, Jutta</creatorcontrib><creatorcontrib>Nierenberg, Andrew A.</creatorcontrib><creatorcontrib>Oslin, David W.</creatorcontrib><creatorcontrib>Pigeon, Wilfred R.</creatorcontrib><creatorcontrib>Post, Edward P.</creatorcontrib><creatorcontrib>Zaslavsky, Alan M.</creatorcontrib><creatorcontrib>Zubizarreta, Jose R.</creatorcontrib><creatorcontrib>Luedtke, Alex</creatorcontrib><creatorcontrib>Kennedy, Chris J.</creatorcontrib><creatorcontrib>Kessler, Ronald C.</creatorcontrib><title>Development of a model to predict combined antidepressant medication and psychotherapy treatment response for depression among veterans</title><title>Journal of affective disorders</title><addtitle>J Affect Disord</addtitle><description>Although research shows that more depressed patients respond to combined antidepressants (ADM) and psychotherapy than either alone, many patients do not respond even to combined treatment. A reliable prediction model for this could help treatment decision-making. We attempted to create such a model using machine learning methods among patients in the US Veterans Health Administration (VHA).
A 2018–2020 national sample of VHA patients beginning combined depression treatment completed self-report assessments at baseline and 3 months (n = 658). A learning model was developed using baseline self-report, administrative, and geospatial data to predict 3-month treatment response defined by reductions in the Quick Inventory of Depression Symptomatology Self-Report and/or in the Sheehan Disability Scale. The model was developed in a 70 % training sample and tested in the remaining 30 % test sample.
30.0 % of patients responded to treatment. The prediction model had a test sample AUC-ROC of 0.657. A strong gradient was found in probability of treatment response from 52.7 % in the highest predicted quintile to 14.4 % in the lowest predicted quintile. The most important predictors were episode characteristics (symptoms, comorbidities, history), personality/psychological resilience, recent stressors, and treatment characteristics.
Restrictions in sample definition, a low recruitment rate, and reliance on patient self-report rather than clinician assessments to determine treatment response limited the generalizability of results.
A machine learning model could help depressed patients and providers predict likely response to combined ADM-psychotherapy. Parallel information about potential harms and costs of alternative treatments would be needed, though, to inform optimal treatment selection.
•30 % of depressed Veterans Health Administration patients responded to combined antidepressant-psychotherapy treatment.•A machine learning model was developed to predict differential response.•The model was significantly predictive.•Parallel modeling across alternative treatments could help optimize treatment.</description><subject>Antidepressant medication</subject><subject>Antidepressive Agents - therapeutic use</subject><subject>Clinical decision support</subject><subject>Combined Modality Therapy</subject><subject>Depression</subject><subject>Depression - drug therapy</subject><subject>Depression - psychology</subject><subject>Humans</subject><subject>Machine learning</subject><subject>Psychotherapy - methods</subject><subject>Treatment response</subject><subject>Veterans</subject><subject>Veterans Health Administration</subject><issn>0165-0327</issn><issn>1573-2517</issn><issn>1573-2517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctu3CAUhlHVqpkmeYBsKpbd2OViG1uVKlXpLVKkLpI9wnDIMLLBBWakeYK-dpnMJGo3WYH4Lxz4ELqipKaEdh839UaZmhHGa0Jr0rNXaEVbwSvWUvEarYqnrQhn4gy9S2lDCOkGQd6iM94JMvScrtCfr7CDKSwz-IyDxQrPwcCEc8BLBON0xjrMo_NgsPLZGSjHKZUtng-yyi74ohi8pL1eh7yGqJY9zhFUfiwt9iX4BNiGiE_xx8wc_APeQS4Bny7QG6umBJen9Rzdff92f_2zuv314-b6y22lm5bmylDKR9owY7XpeaNGIQYYB257U940Gs5Yw1rTjcY2HVjSGKC9ZQzazrKRn6PPx9ZlO5bxdZkvqkku0c0q7mVQTv6veLeWD2Enh0G0pKGl4MOpIIbfW0hZzi5pmCblIWyTZEJQ0vOetcVKj1YdQ0oR7PM1lMgDPrmRBZ884JOEyoKvZN7_O99z4olXMXw6GqD80c5BlEk78LqgiKCzNMG9UP8Xbjawng</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Bossarte, Robert M.</creator><creator>Ross, Eric L.</creator><creator>Liu, Howard</creator><creator>Turner, Brett</creator><creator>Bryant, Corey</creator><creator>Zainal, Nur Hani</creator><creator>Puac-Polanco, Victor</creator><creator>Ziobrowski, Hannah N.</creator><creator>Cui, Ruifeng</creator><creator>Cipriani, Andrea</creator><creator>Furukawa, Toshiaki A.</creator><creator>Leung, Lucinda B.</creator><creator>Joormann, Jutta</creator><creator>Nierenberg, Andrew A.</creator><creator>Oslin, David W.</creator><creator>Pigeon, Wilfred R.</creator><creator>Post, Edward P.</creator><creator>Zaslavsky, Alan M.</creator><creator>Zubizarreta, Jose R.</creator><creator>Luedtke, Alex</creator><creator>Kennedy, Chris J.</creator><creator>Kessler, Ronald C.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230401</creationdate><title>Development of a model to predict combined antidepressant medication and psychotherapy treatment response for depression among veterans</title><author>Bossarte, Robert M. ; Ross, Eric L. ; Liu, Howard ; Turner, Brett ; Bryant, Corey ; Zainal, Nur Hani ; Puac-Polanco, Victor ; Ziobrowski, Hannah N. ; Cui, Ruifeng ; Cipriani, Andrea ; Furukawa, Toshiaki A. ; Leung, Lucinda B. ; Joormann, Jutta ; Nierenberg, Andrew A. ; Oslin, David W. ; Pigeon, Wilfred R. ; Post, Edward P. ; Zaslavsky, Alan M. ; Zubizarreta, Jose R. ; Luedtke, Alex ; Kennedy, Chris J. ; Kessler, Ronald C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-d113b142dfcd834ab779eb93f8d367bd322425d6bdf46ef04de18f22e56f2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antidepressant medication</topic><topic>Antidepressive Agents - therapeutic use</topic><topic>Clinical decision support</topic><topic>Combined Modality Therapy</topic><topic>Depression</topic><topic>Depression - drug therapy</topic><topic>Depression - psychology</topic><topic>Humans</topic><topic>Machine learning</topic><topic>Psychotherapy - methods</topic><topic>Treatment response</topic><topic>Veterans</topic><topic>Veterans Health Administration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bossarte, Robert M.</creatorcontrib><creatorcontrib>Ross, Eric L.</creatorcontrib><creatorcontrib>Liu, Howard</creatorcontrib><creatorcontrib>Turner, Brett</creatorcontrib><creatorcontrib>Bryant, Corey</creatorcontrib><creatorcontrib>Zainal, Nur Hani</creatorcontrib><creatorcontrib>Puac-Polanco, Victor</creatorcontrib><creatorcontrib>Ziobrowski, Hannah N.</creatorcontrib><creatorcontrib>Cui, Ruifeng</creatorcontrib><creatorcontrib>Cipriani, Andrea</creatorcontrib><creatorcontrib>Furukawa, Toshiaki A.</creatorcontrib><creatorcontrib>Leung, Lucinda B.</creatorcontrib><creatorcontrib>Joormann, Jutta</creatorcontrib><creatorcontrib>Nierenberg, Andrew A.</creatorcontrib><creatorcontrib>Oslin, David W.</creatorcontrib><creatorcontrib>Pigeon, Wilfred R.</creatorcontrib><creatorcontrib>Post, Edward P.</creatorcontrib><creatorcontrib>Zaslavsky, Alan M.</creatorcontrib><creatorcontrib>Zubizarreta, Jose R.</creatorcontrib><creatorcontrib>Luedtke, Alex</creatorcontrib><creatorcontrib>Kennedy, Chris J.</creatorcontrib><creatorcontrib>Kessler, Ronald C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of affective disorders</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bossarte, Robert M.</au><au>Ross, Eric L.</au><au>Liu, Howard</au><au>Turner, Brett</au><au>Bryant, Corey</au><au>Zainal, Nur Hani</au><au>Puac-Polanco, Victor</au><au>Ziobrowski, Hannah N.</au><au>Cui, Ruifeng</au><au>Cipriani, Andrea</au><au>Furukawa, Toshiaki A.</au><au>Leung, Lucinda B.</au><au>Joormann, Jutta</au><au>Nierenberg, Andrew A.</au><au>Oslin, David W.</au><au>Pigeon, Wilfred R.</au><au>Post, Edward P.</au><au>Zaslavsky, Alan M.</au><au>Zubizarreta, Jose R.</au><au>Luedtke, Alex</au><au>Kennedy, Chris J.</au><au>Kessler, Ronald C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a model to predict combined antidepressant medication and psychotherapy treatment response for depression among veterans</atitle><jtitle>Journal of affective disorders</jtitle><addtitle>J Affect Disord</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>326</volume><spage>111</spage><epage>119</epage><pages>111-119</pages><issn>0165-0327</issn><issn>1573-2517</issn><eissn>1573-2517</eissn><abstract>Although research shows that more depressed patients respond to combined antidepressants (ADM) and psychotherapy than either alone, many patients do not respond even to combined treatment. A reliable prediction model for this could help treatment decision-making. We attempted to create such a model using machine learning methods among patients in the US Veterans Health Administration (VHA).
A 2018–2020 national sample of VHA patients beginning combined depression treatment completed self-report assessments at baseline and 3 months (n = 658). A learning model was developed using baseline self-report, administrative, and geospatial data to predict 3-month treatment response defined by reductions in the Quick Inventory of Depression Symptomatology Self-Report and/or in the Sheehan Disability Scale. The model was developed in a 70 % training sample and tested in the remaining 30 % test sample.
30.0 % of patients responded to treatment. The prediction model had a test sample AUC-ROC of 0.657. A strong gradient was found in probability of treatment response from 52.7 % in the highest predicted quintile to 14.4 % in the lowest predicted quintile. The most important predictors were episode characteristics (symptoms, comorbidities, history), personality/psychological resilience, recent stressors, and treatment characteristics.
Restrictions in sample definition, a low recruitment rate, and reliance on patient self-report rather than clinician assessments to determine treatment response limited the generalizability of results.
A machine learning model could help depressed patients and providers predict likely response to combined ADM-psychotherapy. Parallel information about potential harms and costs of alternative treatments would be needed, though, to inform optimal treatment selection.
•30 % of depressed Veterans Health Administration patients responded to combined antidepressant-psychotherapy treatment.•A machine learning model was developed to predict differential response.•The model was significantly predictive.•Parallel modeling across alternative treatments could help optimize treatment.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>36709831</pmid><doi>10.1016/j.jad.2023.01.082</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-0327 |
ispartof | Journal of affective disorders, 2023-04, Vol.326, p.111-119 |
issn | 0165-0327 1573-2517 1573-2517 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9975041 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Antidepressant medication Antidepressive Agents - therapeutic use Clinical decision support Combined Modality Therapy Depression Depression - drug therapy Depression - psychology Humans Machine learning Psychotherapy - methods Treatment response Veterans Veterans Health Administration |
title | Development of a model to predict combined antidepressant medication and psychotherapy treatment response for depression among veterans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A51%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20model%20to%20predict%20combined%20antidepressant%20medication%20and%20psychotherapy%20treatment%20response%20for%20depression%20among%20veterans&rft.jtitle=Journal%20of%20affective%20disorders&rft.au=Bossarte,%20Robert%20M.&rft.date=2023-04-01&rft.volume=326&rft.spage=111&rft.epage=119&rft.pages=111-119&rft.issn=0165-0327&rft.eissn=1573-2517&rft_id=info:doi/10.1016/j.jad.2023.01.082&rft_dat=%3Cproquest_pubme%3E2771083825%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771083825&rft_id=info:pmid/36709831&rft_els_id=S0165032723001015&rfr_iscdi=true |